Neutron star natal kicks and the long-term survival of star clusters Abstract: We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2% of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of four. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass loss or two-body relaxation. The competition between these effects shapes the mass loss profile of star clusters, which may either dissolve abruptly (“jumping”), in the pre-core-collapse phase, or gradually (“skiing”), after having reached core collapse.