New ALMA Long Baseline Observations of the Transitional Disk around TW Hya

Takashi Tsukagoshi (Ibaraki University, Japan)
H. Nomura, T. Muto, R. Kawabe, D. Ishimoto,
K. D. Kanagawa, S. Okuzumi, S. Ida, C. Walsh, T. J. Millar
Introduction: TW Hya

- Nearest PPD at d~54pc
- Face-on disk (i=7°)
 => Good lab. for investigate radial structure of disk

- Gapped disk has been resolved
 - NIR and Submm.
 - Physical properties may be varied at 20-30 au
 - It possibly associates with CO snow line [Qi+2013]
Previous work (Nomura et al. 2016) & Motivation

- ALMA cycle 2 obs. in 2015
- Potential gap at ~25 au
 - Width and depth are consistent with clearing by super M_{Nep} planet
- Dust size distribution is key for understand the origin
 - Large grains are filtered out at the gap edge due to dust filtration [Zhu+2012]

Purposes of this study
- To confirm the gap with higher resolution
- To reveal the dust size distribution across the gap from spectral index at submillimeter
ALMA Observation (cycle 3 DDT)

- 1 & 2 Dec. 2015
 - Cycle 3 DDT
 - Array Config.: C36-7 to C36-1
- Continuum at band 4 & 6
- Multi frequency synthesis (MFS)
 - Combined intensity map (~190GHz)
 - Spectral index map
 - Resolution: 3.9x2.9 au
- Sparse UV coverage <200kl
 - North-South direction (v-axis)
 - Band 6 archival data was added, not for band 4
 => artifact in the spectral index map
Multiple gaps and rings
Inner hole structure is marginally resolved
=> consistent with band 7 image [Andrews+2016]

Clear gaps at 22 & 37 au
Weak (a few %) declines of intensity at 6, 28, 44 au
Band 4+6 (190GHz) Combined Image

- Multiple gaps and rings
- Inner hole structure is marginally resolved
 => consistent with band 7 image [Andrews+2016]
- Clear gaps at 22 & 37 au
- Weak (a few %) declines of intensity at 6, 28, 44 au
Band 4+6 (190GHz) Combined Image

- Multiple gaps and rings
- Inner hole structure is marginally resolved
 => consistent with band 7 image [Andrews+2016]

- Clear gaps at 22 & 37 au
- Weak (a few %) declines of intensity at 6, 28, 44 au
- Radial variation of α
- Non-axisymmetric due to sparse UV coverage along ν-axis at band 4
 - E-W direction is reliable
- α decreases 3 -> 2 toward the center
- Enhancement at 22 au gap
Spectral Index Map

- Radial variation of α
- Non-axisymmetric due to sparse UV coverage along v-axis at band 4
 - E-W direction is reliable
- α decreases 3 -> 2 toward the center
- Enhancement at 22 au gap
Optical Depth τ and Dust Opacity index β

- τ & β are derived from $I_{190\text{GHz}}$ and α
 \[I_{\nu}(R) = B_{\nu}(T_d(R)) \left(1 - \exp[-\tau_{\nu}]\right) \]
 \[\alpha(R) \equiv \frac{d \log(I_{\nu})}{d \log \nu} = 3 - \frac{T_0}{T_d(R)} \frac{e^{T_0/T_d(R)}}{e^{T_0/T_d(R)} - 1} + \beta(R) \frac{\tau_{\nu}(R)}{e^{\tau_{\nu}(R)} - 1}. \]
- $T(R)=T_{10}(R/10\text{au})^{-0.3}$ is assumed and T_{10} is varied 22-30K [Andrews+2012]

- Optically thin $R>15\text{au}$, marginally thick at inner R
- $\beta_{\text{peak}} \sim 1.7$ at 22 au gap (\simISM)
 \Rightarrow large grains deficit inside the gap
 Consistent with the picture of dust filtration by a planet [Zhu+2012]
Gap Structure

- Model fitting using inner hole + 2 prominent gaps
 \[\tau_{bg} = \tau_0 (R/10 \text{ au})^{-g} \]
 \[f_{gap} = 1 + (10^{A_g} - 1) \exp \left[-\frac{(R - r_g)^2}{w_g^2} \right] \]
 \[\tau_{model}(R) = \tau_{bg}(R) \times f_{gap, in} \times f_{gap, 22 au} \times f_{gap, 37 au} \]
 - Best fits of gap parameters are obtained by least square method for several of \(g \) & \(T_{10} \)

- Parameters of 22 au gap (case of \(T_{10} = 22 \text{K}, g = 1.1 \))
 - \(W_g: 4.7 \pm 0.3 \text{ au} \)
 - \(A_g: -0.39 \pm 0.03 \) (\(\sim 60\% \) of \(\tau_{bg} \))
Expected Planet Mass for Planet-induced Gap

- Width and depth of gap are related to planet mass [Kanagawa et al. 2015, 2016]
- Observed width and depth could be opened by a super-Neptune mass planet
 - Consistent with our cycle 2 results if Width*Depth = const.
- \(\alpha = 10^{-3}, \frac{h}{R} = 0.05 \)

\[
\text{Width \(\Delta_{\text{gap}} \) [AU] at } R_p = 22 \text{AU}
\]

\[
\frac{\text{Depth (} \Sigma_0 - \Sigma \text{)/}\Sigma_0}{\text{Planetary Mass } M_p \text{ [M}_\text{Jup}\text{]}}
\]

#Planet mass is upper limit because Kanagawa’s formula is for gas gap
Summary

• We carried out multi-band ALMA long baseline observations at band 4 and 6
 • Multiple gaps/rings are resolved
 • Radial variation of the spectral index is found
• Optical depth τ and dust opacity index β are derived
 • Disk is thin $R>\sim15$, while the inner part is marginally thick.
 • β decreases toward the disk center ~1.5 to 0
 • β peaks at 22 au gap
• 22 au gap could be caused by planet-disk interaction
 • Large grain deficit at the gap, consistent with dust filtration
 • Width and depth agree with theoretical prediction of M_{Nep} planet