

Classifying Exoplanet Candidates with Convolutional Neural Networks: Application to the Next Generation Transit Survey

Artificial Intelligence in Astronomy 2019

Alexander Chaushev¹, Liam Raynard² & the NGTS Consortium

Center for Astronomy and Astrophysics, TU Berlin, Germany
 Department of Physics and Astronomy, University of Leicester, UK

Next Generation Transit Survey (NGTS)

- Twelve independently mounted 200mm telescopes, each with an 8 square degree field of view
- 12 second cadence, with 10 second exposure time
- About 200,000 observations per target depending on field
- Source driven photometry in range 8 to 16th mag in I-band
- Pass-band is 520nm to 890nm, red-sensitive deep depleted CCD.
- See Wheatley+18 for more details...

Light curve detrending	Candidate detection	Human vetting	Follow up
 Common mode behaviour (SysRem: Tamuz+05; TFA: Kovács+05) Light curve specific (Vanderburg+14; TSARDI: Mislis+18; Eigmüller in prep.) 	 Box-Least Squares (BLS) fitting & derivatives (Kovács+02, Cabrera+12) Matched Filter (Jenkins+02, Bordé+07) 	 NGTS: 50k+ candidates; 96% false positives (<i>Günther+17</i>) Lack of consistency among "eyeballers" 	 Radial Velocity Photometry Global modelling

Too many (BLS) false positives...

Candidates:

- 14 planets in dataset
- ~ 350 promising candidates are flagged manually
- over 50,000+ candidates in total

Improving detection efficiency is important for understanding exoplanets

Easier

- 1. Remove obvious false positives detections to speed up manual vetting
- 2. Improve the recovery of low S/N transits
- 3. Make better use of limited follow-up time
- 4. Improve occurrence rate measurements

Harder

Method - Classifying NGTS candidates

Convolutional Neural Networks (CNNs) learn their own features

We explore the optimal training dataset composition

- Six different dataset compositions are evaluated
- Each contains 24k training lightcurves in total
- Construct network using PyTorch (Paszke+2017)

CNN inputs include global and local view

Four example lightcurves - as seen by the neural network.

- Using simulated data with similar noise properties to NGTS
- AUC and Accuracy in the test set as a function of incorrect labels in the training data.
- Related literature: Reis+19 (Probabilistic Random Forests), Rolnick+17 (Massive Label Noise), Li+19 (Gradient Descent is Robust to Label Noise)

Results

Nearly all confirmed planets with NGTS lightcurves are recovered

Planet name	NP	NP/EB	NP/EB	NP/EB	NP/EB	VFP
			/WF	/WF/VFP	/VFP	
NGTS-1b	0.993	0.996	0.992	0.992	0.991	0.986
NGTS-2b	1.000	0.970	0.970	0.122	0.065	0.049
NGTS-3Ab	0.998	0.995	0.995	0.933	0.927	0.835
NGTS-4b	0.981	0.981	0.981	0.771	0.709	0.391
NGTS-5b	0.997	0.996	0.996	0.988	0.991	0.967
NGTS-6b	0.949	0.915	0.915	0.923	0.921	0.969
NOI-101123 (in prep)	0.992	0.983	0.983	0.792	0.729	0.761
NOI-101155 (in prep)	0.996	0.993	0.993	0.860	0.845	0.146
NOI-102329 (in prep)	0.995	0.991	0.991	0.741	0.631	0.441
NOI-101635 (in prep)	0.998	0.996	0.993	0.945	0.943	0.603
WASP-68b	1.000	0.999	0.999	0.676	0.524	0.042
WASP-98b	0.992	0.992	0.992	0.935	0.888	0.94
WASP-131b	0.972	0.783	0.783	0.782	0.780	0.864
HATS-43b	0.999	0.998	0.994	0.786	0.685	0.273

VFP = Vetting False Positive, NP = Non-periodic,

EB = Eclipsing Binary, WF = Wrongly folded

CNN predictions show good agreement with eyeballing labels

Flag

Model	AUC	Accuracy	Precision	Recall
Eveballing flags:				
VFP	77.9 ± 0.4	87.7 ± 0.9	1.37 ± 0.04	42.0 ± 2.0
NP/EB/VFP	77.5 ± 0.5	77.6 ± 0.9	1.6 ± 0.03	60.0 ± 2.0
NP/EB/WF/VFP	76.5 ± 0.4	74.6 ± 1.1	$\textbf{0.98} \pm \textbf{0.02}$	63.0 ± 2.0
NP/EB/WF	65.2 ± 0.4	41.7 ± 1.1	$\textbf{0.54} \pm \textbf{0.01}$	81.0 ± 2.0
NP/EB	63.9 ± 0.4	$\textbf{38.2} \pm \textbf{1.1}$	$\textbf{0.53} \pm \textbf{0.01}$	84.0 ± 1.0
NP	50.3 ± 0.6	9.4 ± 0.5	$\textbf{0.39}\pm\textbf{0.01}$	91.3 ± 0.9

VFP = Vetting False Positive, NP = Non-periodic, EB = Eclipsing Binary, WF = Wrongly folded

Transit recovery as a functions of signal to noise

Summary

- Using a threshold of 0.1 we can reduce the number of false positives by half, while keeping all planets and 91% of promising candidates.
- CNN predictions show good agreement with eyeballing labels $\sim 75\%$ accuracy (threshold of 0.5).
- $\bullet\,$ Many new candidates identified with probability > 0.95 require further vetting.
- Future work: add network inputs, continue optimising training data composition, improve architecture.

A.CHAUSHEV@TU-BERLIN.DE