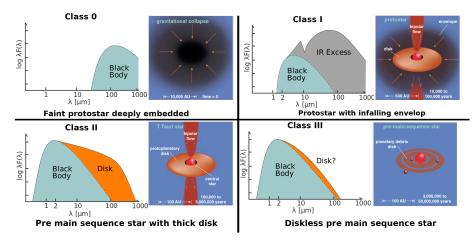
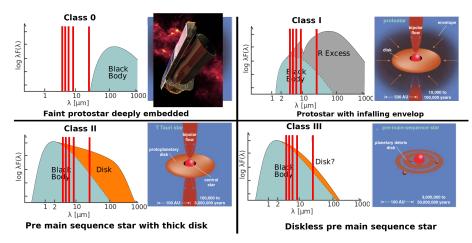
Deep learning for the selection of YSO candidates from IR surveys

David Cornu, PhD Student Supervised by: J. Montillaud & A. Robin


Institut UTINAM, Univ. Bourgogne Franche-Comté, OSU THETA, Besançon, France

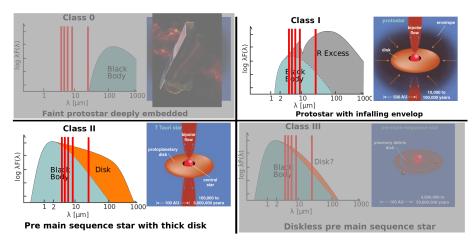
Artificial Intelligence in Astronomy - 2019

Young Stellar Objects

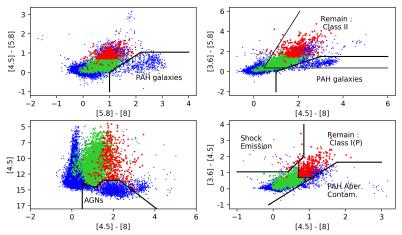

Young Stellar Objects YSOs \rightarrow characterize star-forming regions.

Classified by evolutionary steps using their infrared SEDs.

Young Stellar Objects


Young Stellar Objects YSOs \rightarrow characterize star-forming regions.

Classified by evolutionary steps using their infrared SEDs.


Young Stellar Objects

Young Stellar Objects YSOs \rightarrow characterize star-forming regions.

Classified by evolutionary steps using their infrared SEDs.

Commonly used classification scheme

Adapted from Gutermuth et al. (2009) method (G09) using IRAC at 3.6, 4.5, 5.8, 8.0 μm and MIPS at 24 μm . Class I in red and Class II in green, and Other in blue.

Limitation: Arbitrariness remain in the placement of the cuts, objects near the cuts are less robustly classified, but it is difficult to quantify.

David Cornu

 \Rightarrow Core concept: extract statistical information about a dataset and adapt the response accordingly

Supervised

• A training set with the expected targets provided

Unsupervised

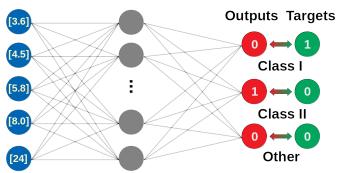
• Dataset without targets.

 \Rightarrow Core concept: extract statistical information about a dataset and adapt the response accordingly

Supervised

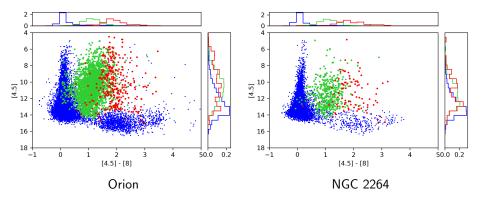
• A training set with the expected targets provided

Unsupervised


• Dataset without targets.

Main objective: Replacing straight cuts in YSO selection with non-linear and statistically learned splittings

YSO classification with MLP


Inputs Vector : IRAC + MIPS 24

Network dimensions:

- Number of input nodes: number of dimensions of the problem. \rightarrow 10 nodes (5 mag + 5 σ_{mag})
- Number of hidden layers: no impact on results $\rightarrow 1$ hidden layer is enough
- Number of hidden neurons: \propto difficulty of the problem $\rightarrow 1$ neuron ≈ 1 hyper-plane in the input parameter space
- Number of output neurons: choose an encoding method.
 - \rightarrow Classification, one neuron per class \Rightarrow **SOFT-MAX** activation

Different star-forming regions \Rightarrow cover different parts of the input parameter space.

Data selection and preparation

Spitzer datasets used:

- Orion survey from Megeath et al. (2012)
- INGC 2264 / Mon OB1 survey from Rapson et al. (2014)
- Solution Near 1kpc clouds from Gutermuth et al. (2009)

Use adapted G09 method \Rightarrow define a labeled dataset.

Data selection and preparation

Spitzer datasets used:

- Orion survey from Megeath et al. (2012)
- INGC 2264 / Mon OB1 survey from Rapson et al. (2014)
- Solution Near 1kpc clouds from Gutermuth et al. (2009)

Use adapted G09 method \Rightarrow define a labeled dataset.

Separate the labeled datasets into:

a training set (majority) Used to perform training a test set (small part) Saved away to assess results quality

Data selection and preparation

Spitzer datasets used:

- Orion survey from Megeath et al. (2012)
- INGC 2264 / Mon OB1 survey from Rapson et al. (2014)
- Solution Near 1kpc clouds from Gutermuth et al. (2009)

Use adapted G09 method \Rightarrow define a labeled dataset.

Separate the labeled datasets into:

a training set (majority) Used to perform training a test set (small part) Saved away to assess results quality

Labeled dataset : 414 CI, 2659 CII and 23830 Others \Rightarrow Strong Imbalance

Imbalance in results

Labeled dataset : 414 CI, 2659 CII and 23830 Others

Machine learning algorithms are made to work on balanced datasets.

Labeled dataset : 414 CI, 2659 CII and 23830 Others

Machine learning algorithms are made to work on balanced datasets. Example on disease detection, the majority of the tested persons are not sick AND the cure presents risks \Rightarrow must avoid to give unnecessary medication

Labeled dataset : 414 CI, 2659 CII and 23830 Others

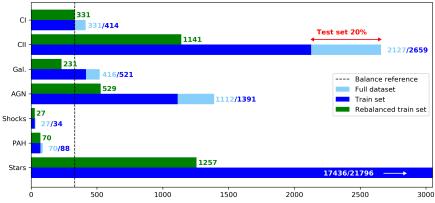
Machine learning algorithms are made to work on balanced datasets. Example on disease detection, the majority of the tested persons are not sick AND the cure presents risks \Rightarrow must avoid to give unnecessary medication

	Class	Unhealthy	Healthy	Recall
Actual	Unhealthy Healthy	8 7	2 93	80% 93%
1	Precision	53.3%	97.9%	91.8%
$Recall = \frac{TP}{TP + FI}$ $Accuracy = \frac{TP}{TP}$	$\frac{1}{N}$ Precision $\frac{TP + TN}{TP + TN + FF}$	$=\frac{TP}{TP+FP}$	$TP \equiv$ True Positive $FP \equiv$ False Positive	$TN \equiv$ True Negativ $FN \equiv$ False Negativ

Predicted

Labeled dataset : 414 CI, 2659 CII and 23830 Others

Machine learning algorithms are made to work on balanced datasets. Example on disease detection, the majority of the tested persons are not sick AND the cure presents risks \Rightarrow must avoid to give unnecessary medication


Actual	Class	Unhealthy	Healthy	Recall
	Unhealthy Healthy	8 7	2 93	80%
	Precision	53.3%	97.9%	91.8%

Predicted

Results of a classification must be tested on true use case scenario using "Observational proportions"

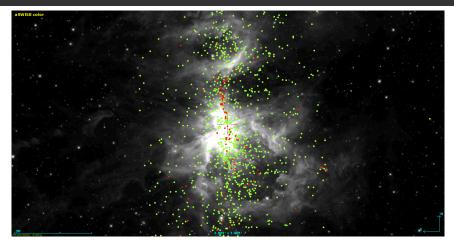
Imbalanced learning difficulty

Various methods can be applied to re-balance (mock data, weighting, ...).

- Control the impact of each class in the training set
- Must be \propto input parameter space coverage
- Must keep enough objects apart in Obs. prop. for the test set (Saturation)

Precautions regarding the size and balance of the dataset for classification:

	Large sample	Small sample	
Balanced No issue		Param. space coverage	
Imbalanced	Obs. Proportions	Param. space coverage Obs. Proportions Must avoid dilution	

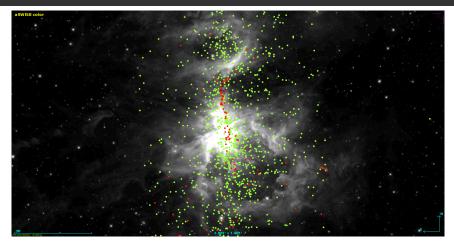

Overall, having a large sample mitigates the difficulties caused by imbalanced datasets.

Results of the training from the near 1kpc dataset described before and using proper training proportions.

			Predicted		
	Class	YSO CI	YSO CII	Other	Recall
al	YSO CI	75	3	4	91.5%
ctual	YSO CII	6	515	8	97.0%
Ă	Other	8	42	4714	99.0%
	Precision	84.3%	92.0%	99.7%	98.6%

Test set size: 20% of the combined Orion and 2264 labeled dataset, using averaged observational proportions.

Classification comparison: Orion



Class II in green, and Class I in red

- Gutermuth classification

Wise 3.6 μm background image

Classification comparison: Orion

Class II in green, and Class I in red - Learned with MLP

Wise 3.6 μm background image

Conclusion / Take home messages

- Usually ML methods they need large dataset to learn from
- Precautions must be taken in imbalanced cases (Obs. Proportions, Re-balance training set)
- ANN are able to balance some of the limitations of the usual YSO classification, providing efficient candidates catalogs.

On going work:

- Try more recent semi-supervised learning methods
- Use simulated YSOs as our training sample to avoid the G09 classification
- Extend to large survey (GLIMPSE) to provide wide candidates catalog

Adding the region NGC 2264 from Rapson+ 2014

Training: Orion; Forward: NGC 2264 Training: NGC 2264; Forward: Orion

Class	YSO CI	YSO CII	Other	Recall	Class	YSO CI	YSO CII	Other Recall
YSO CI YSO CII Other	74 6 9	2 402 52	14 27 7203	82.2% 92.4% 99.2%	YSO CI YSO CII Other	285 54 98	33 1967 293	688.0%20388.4%1617597.6%
Precision	83.2%	88.2%	99.4%	98.6%	Precision	65.2%	85.8%	98.7% 96.4%

Adding the region NGC 2264 from Rapson+ 2014

Training: Orion; Forward: NGC 2264 Training: NGC2264; Forward: Orion

Class	YSO CI	YSO CII	Other	Recall	Class	YSO CI	YSO CII	Other Recall
YSO CI YSO CII Other	74 6 9	2 402 52	14 27 7203	82.2% 92.4% 99.2%	YSO CI YSO CII Other	285 54 98	33 1967 293	688.0%20388.4%1617597.6%
Precision	83.2%	88.2%	99.4%	98.6%	Precision	65.2%	85.8%	98.7% 96.4%

Confusion matrix for the Merged training set, forwarded on the corresponding test set.

Class	YSO CI	YSO CII	Other	Recall
YSO CI	77	2	3	93.9%
YSO CII	9	514	8	96.8%
Other	9	49	4706	98.8%
Precision	81.1%	91.0%	99.8%	98.5%

Result on the full datasets:

			Predicted		
	Class	YSO CI	YSO CII	Other	Recall
a	YSO CI	391	13	10	94.4%
Actu	YSO CII	37	2590	32	97.4%
	Other	46	210	23574	98.9%
	Precision	82.5%	92.1%	99.8%	98.7%

No filter, no object lost

Result on the full datasets:

			Predicted		
	Class	YSO CI	YSO CII	Other	Recall
Actual	YSO CI	318	1	8	97.2%
	YSO CII	10	2443	14	99.0%
	Other	23	92	23383	99.5%
	Precision	90.6%	96.3%	99.9%	99.4%

0.9 filter, 611 lost (87 Cl, 192 Cll, 332 Other)