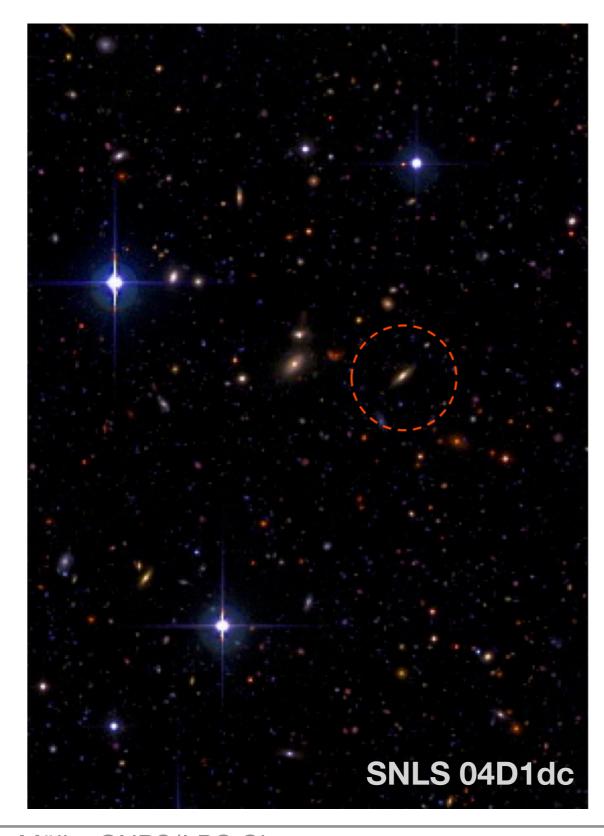
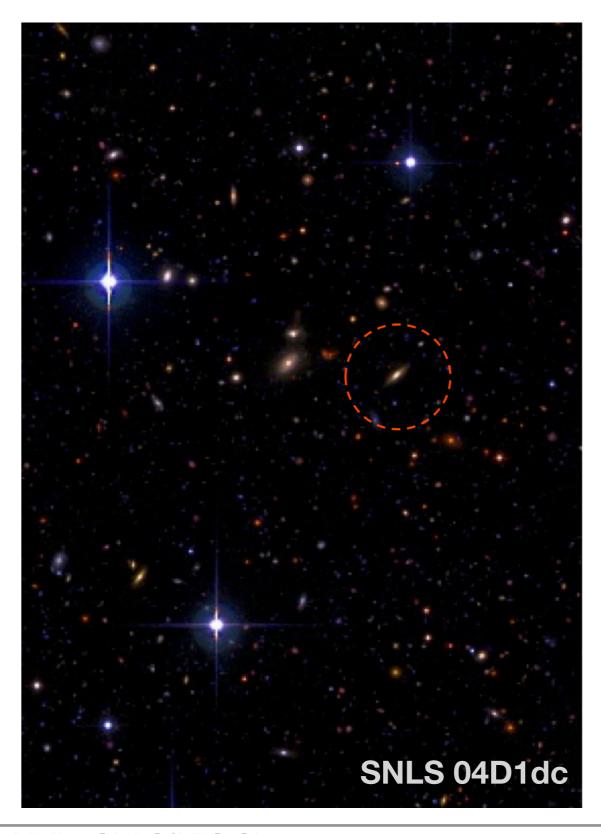


Bayesian Neural Network lightcurve classification

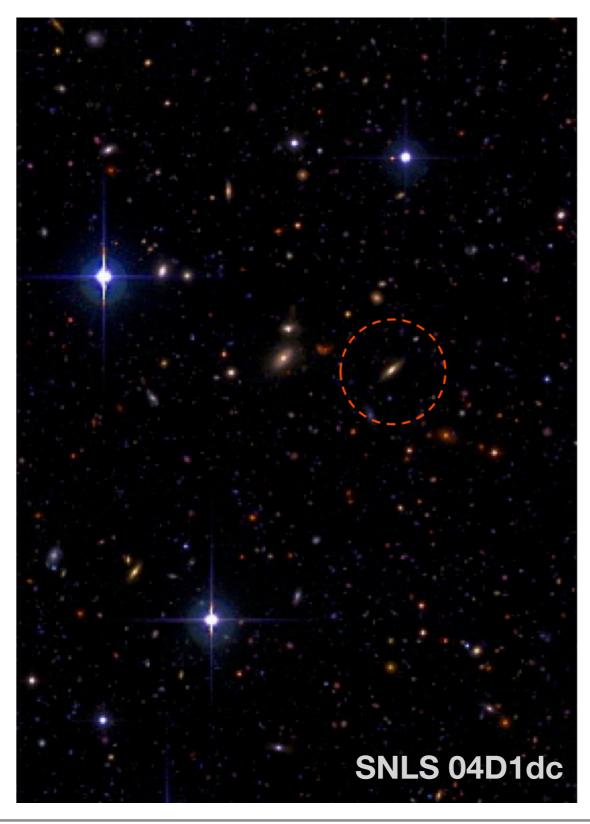
Anais Möller CNRS / LPC Clermont

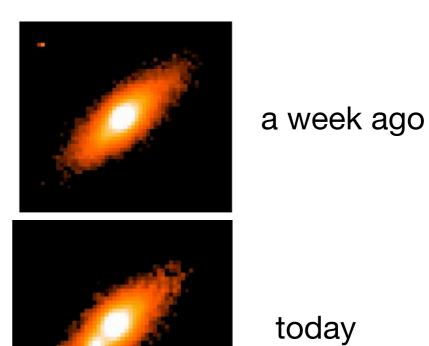
Garching, July 21st 2019

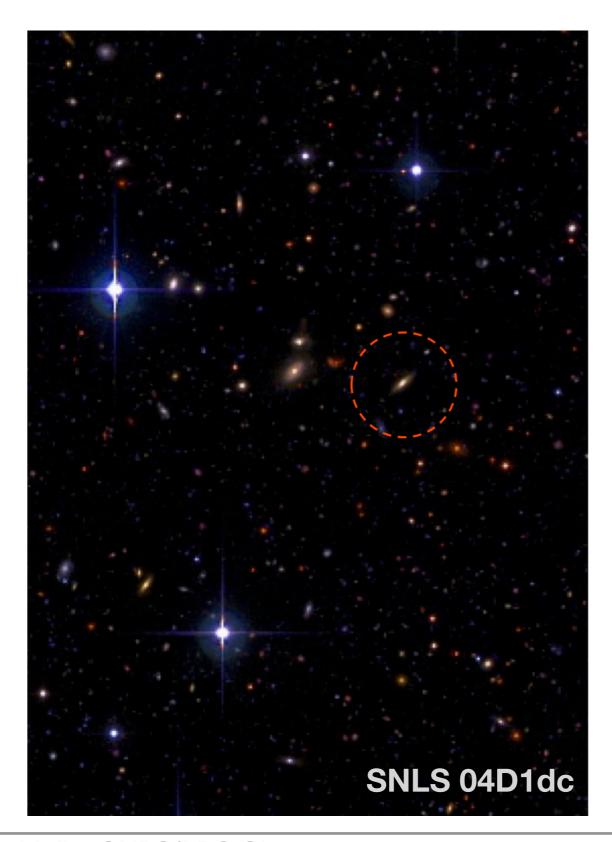


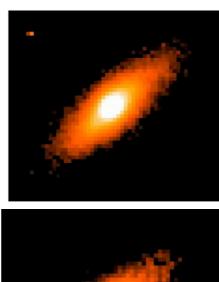


a week ago

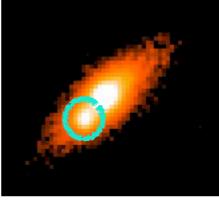




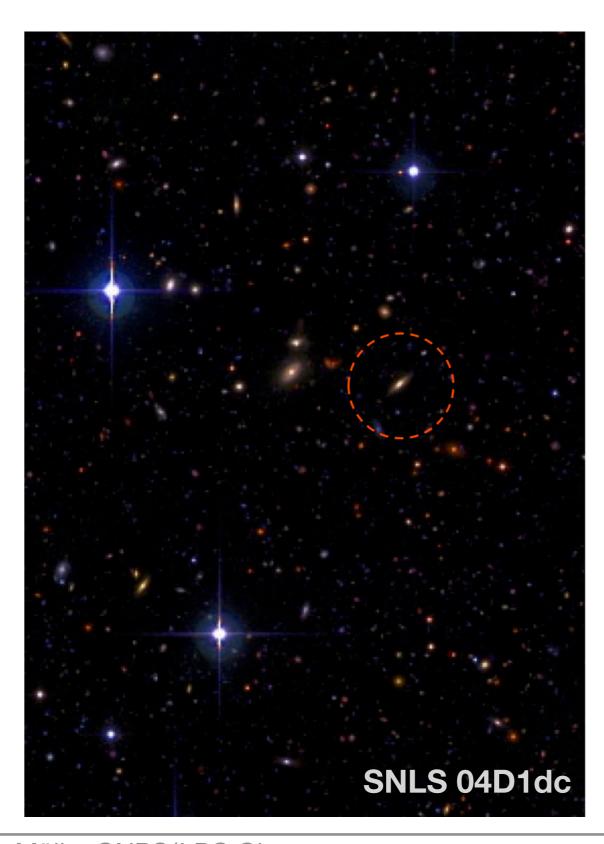


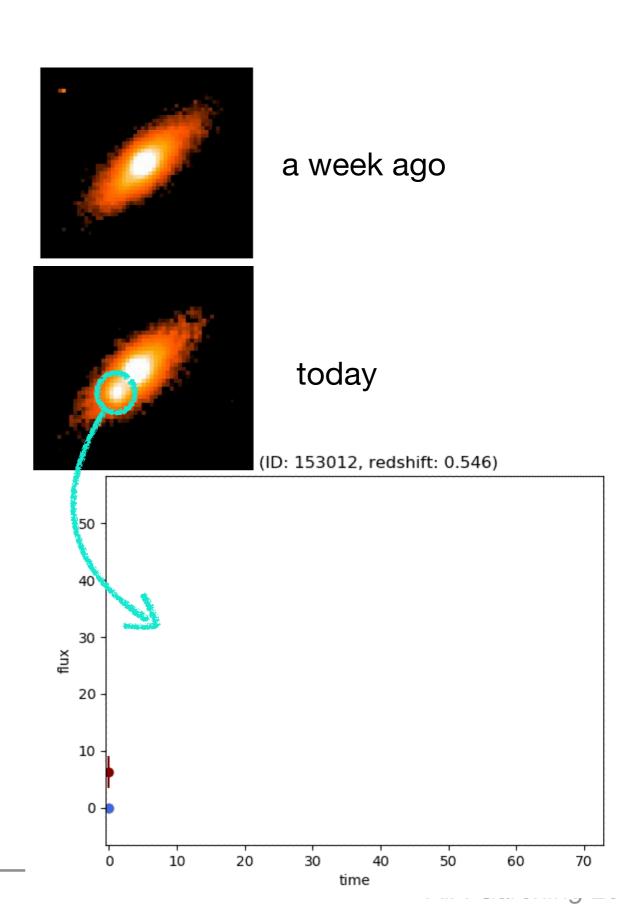


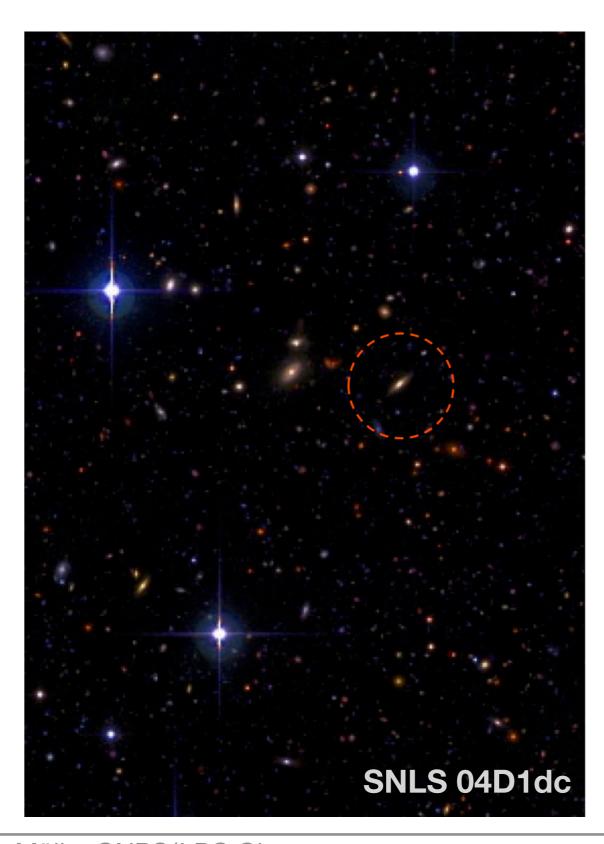
a week ago

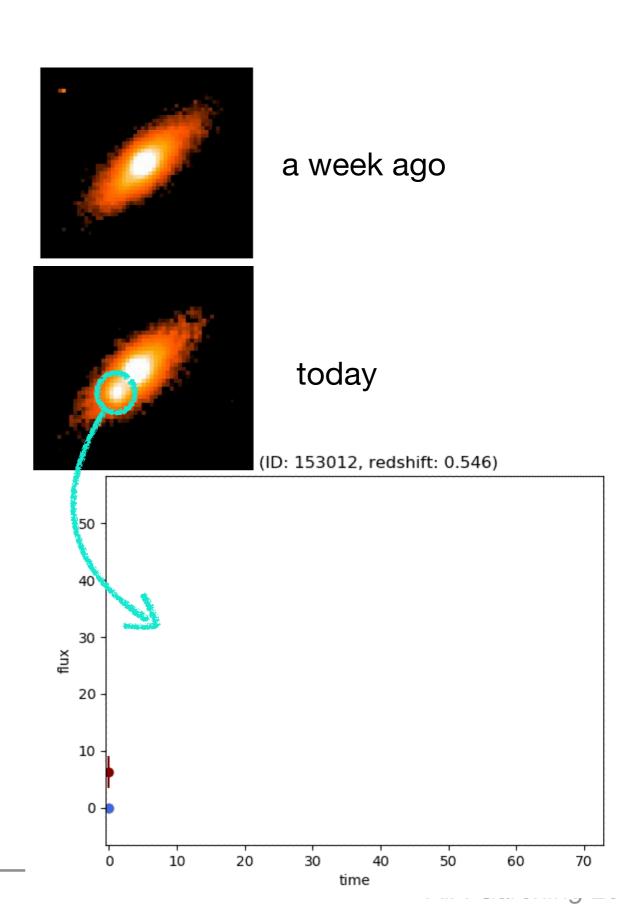


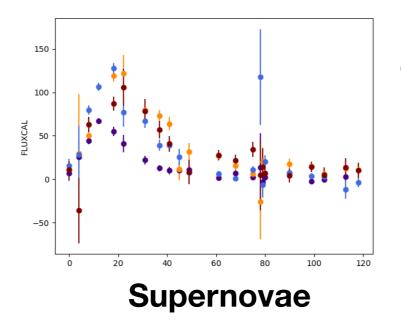
today



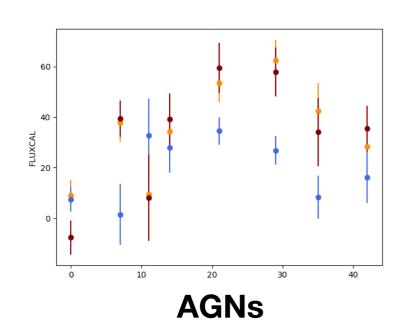


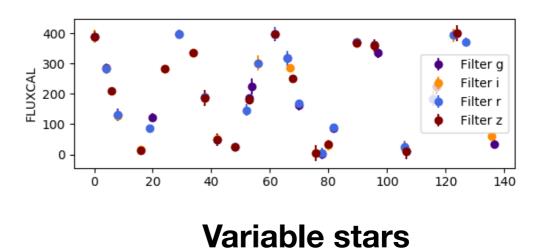






Types Ia, Ib, Ic, II, II-L, II-P, IIn, ...



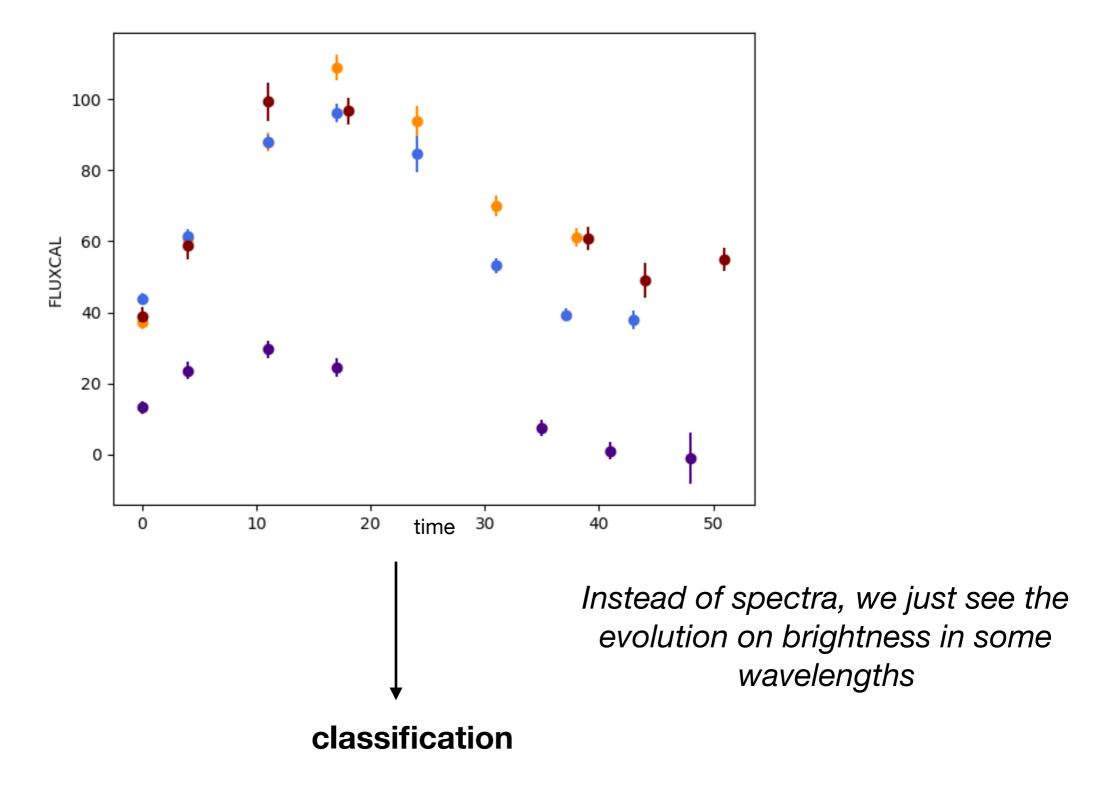


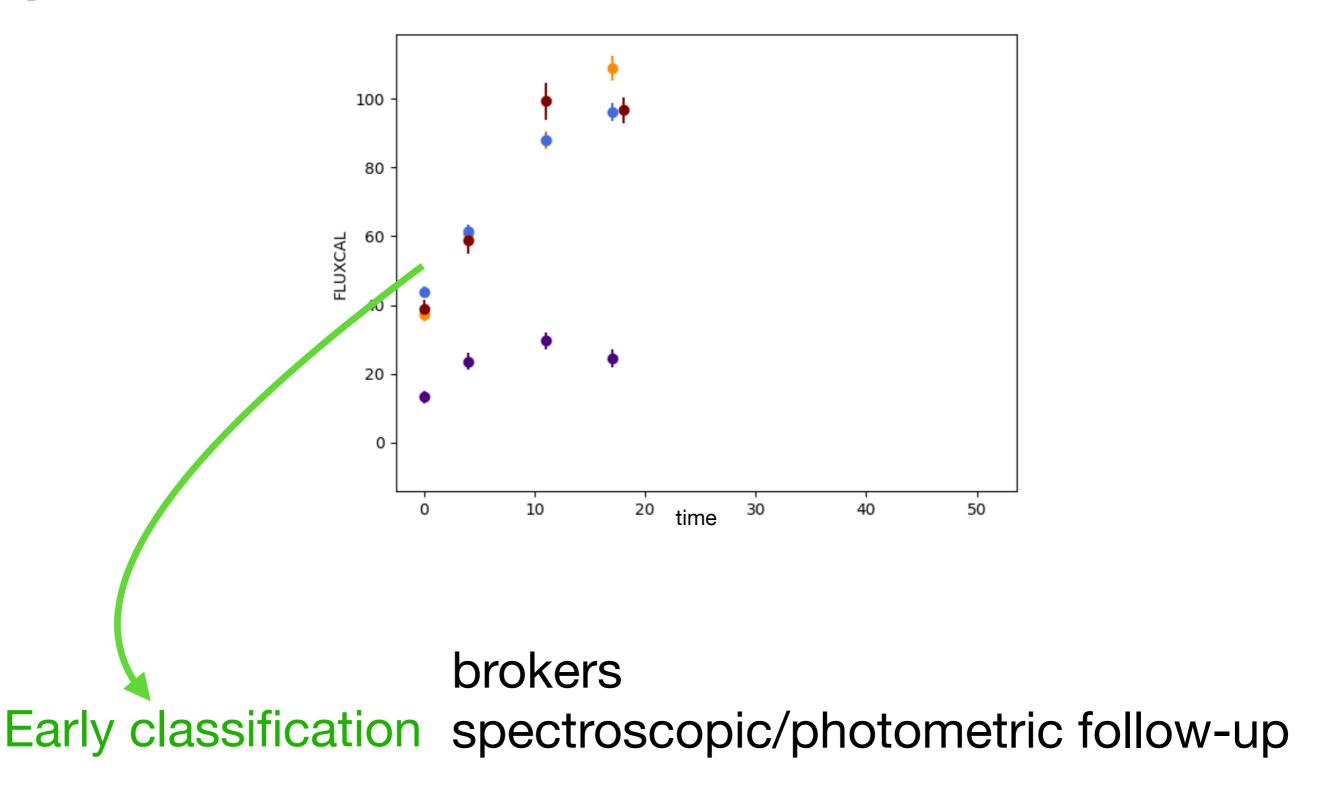
kilonovae, transiting exoplanets, microlensing events, flares, CV, ...

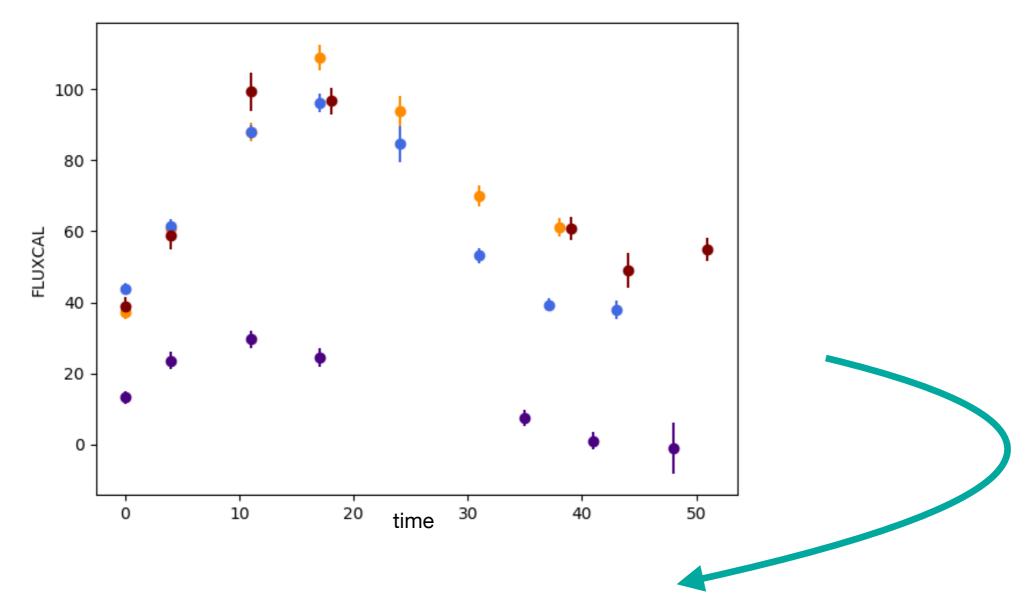
future surveys: large synoptic survey telescope

In numbers:

- * 10-year survey, starting 2022
- * 1,000 images/night = 15 TB/night
- * 10,000 alerts/30 seconds = 1 GB / 30 s







Complete light-curve classification

larger & more reliable samples, probing new parameter space

Results from the Supernova Photometric Classification Challenge

RICHARD KESSLER, 1.2 BRUCE BASSETT, 3.4.5 PAVEL BELOV, 6 VASUDHA BHATNAGAR, 7 HEATHER CAMPBELL, 8 ALEX CONLEY, JOSHUA A. FRIEMAN, 12,10 ALEXANDRE GLAZOV, SANTIAGO GONZÁLEZ-GAITÁN, 11 Renée Hlozek, 12 Saurabh Jha, 13 Stephen Kuhlmann, 14 Martin Kunz, 15 Hubert Lampeitl, 8 ASHISH MAHABAL, 16 JAMES NEWLING, 3 ROBERT C. NICHOL, 8 DAVID PARKINSON, 17 NINAN SAJEETH PHILIP, 18 DOVI POZNANSKI, 19,20 JOSEPH W. RICHARDS, 20,2 STEVEN A. RODNEY,²² MASAO SAKO,²³ DONALD P. SCHNEIDER,²⁴ MATHEW SMITH, 25 MAXIMILIAN STRITZINGER, 26,27,21 AND MELVIN VARUGHESE²⁹

no

Classification of Multiwavelength Transients with Machine

K. Sooknunan¹, M. Lochner^{2,3,5}, Bruce A. Bassett^{1,2,3,4}, H. V. Peiris^{5,6}, R. Fender^{7,9} A. J. Stewart^{7,8}, M. Pietka⁷, P. A. Woudt⁹, J. D. McEwen¹⁰, O. Lahav⁵

MODELS AND SIMULATIONS FOR THE PHOTOMETRIC LSST ASTRONOMICAL TIME SERIES CLASSIFICATION CHALLENGE (PLASTICC)

R. Kessler^{1,2}, G. Narayan³, A. Avelino⁴, E. Bachelet⁵, R. Biswas⁶, P. J. Brown⁷, D. F. Chernoff⁸ A. J. Connolly⁹, M. Dal¹⁰, S. Daniel⁹, R. Di Stefano⁴, M. R. Drout¹¹, L. Galbany¹², S. González-Gaitán M. L. Graham⁹, R. Hložek^{11,14}, E. E. O. Ishida¹⁵, J. Guillochon⁴, S. W. Jha¹⁰, D. O. Jones¹⁶, K. S. Mandel D. Muthukrishna¹⁷, A. O'Grady^{11,14}, C. M. Peters¹⁴, J. R. Pierel¹⁹, K. A. Ponder²⁰, A. Prša²¹, S. Rodne V. A. VILLAR⁴

(THE LSST DARK ENERGY SCIENCE COLLABORATION AND THE Transient and Variable Stars Science Collaboration)

Semi-supervised learning for photometric supernova classification*

Joseph W. Richards, ^{1,2}† Darren Homrighausen, ³ Peter E. Freeman, ³ Chad M. Schafer³ and Dovi Poznanski^{1,4}

Photometric classification and redshift estimation of LSST Supernovae

Mi Dai, ^{1★} Steve Kuhlmann, ² Yun Wang ³ and Eve Kovacs ²

Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream

Gautham Narayan^{1,13}, Tayeb Zaidi², Monika D. Soraisam³, Zhe Wang⁴, Michelle Lochner^{5,6,7}, Thomas Matheson³, Abhijit Saha³, Shuo Yang⁴, Zhenge Zhao⁴, John Kececioglu⁴, Carlos Scheidegger⁴, Richard T. Snodgrass⁴, Tim Axelrod⁸ Tim Jenness^{9,10}, Robert S. Maier¹¹, Stephen T. Ridgway³, Robert L. Seaman¹², Eric Michael Evans⁴, Navdeep Singh⁴, Clark Taylor⁴, Jackson Toeniskoetter⁴, Eric Welch⁴, and Songzhe Zhu⁴ (The ANTARES Collaboration)

A recurrent neural network for classification of unevenly sampled variable stars

Brett Naul, Joshua S. Bloom, Fernando Pérez, Stéfan van der Walt November 30, 2017

Deep-Learnt Classification of Light Curves

habal*, K Sheth[†], F Gieseke[‡], A Pai[‡], S G Djorgovski*, A J Drake[§], M J Graham*, and CSS/CRTS/PTF Teams

*Center for Data-Driven Discovery, California Institute of Technology, Pasadena, CA, 91125

[†]Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India [‡]Department of Computer Science, University of Copenhagen, Copenhagen, Denmark §Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA, 91125

P. Belov and S. Gla

C. Schafer, P. Fre . Bassett, R. Hlozek, D. Parkinson, M. Smith

H. Campbell, M. Hilton, H. Lampeitl, M. Kunz P. Patel (JEDI group^h

A. Singhal, A. Rai.

H. Lampietl, M.Smit

Belov & Glaze

JEDI-Hubble

MGU+DU-2

Poz2007 OPT

A PROBABILISTIC APPROACH TO CLASSIFYING SUPERNOVAE USING PHOTOMETRIC INFORMATION

NATALIA V. KUZNETSOVA¹ AND BRIAN M. CONNOLLY² Received 2006 October 9; accepted 2006 December 8

Deep Recurrent Neural Networks for Supernovae Classification

Tom Charnock* and Adam Moss

(Dated: October 31, 2016)

PELICAN: deeP architecturE for the Light Curve ANalysis Aniop and Sissa journal Novin

PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

90 light curve χ^2 test against Nugent templates

light curve slopes & Random Forests (2)

Deviation from parametrized Hubble diagram (3)

SN-ABC with cuts to optimize C_{FoM-Ia} (2)

cuts on SiFTO fit χ^2 and fit paramet Spline fit & nonlinear dimensionality

Hubble diagram KDE (3)

Johanna Pasquet¹, Jérôme Pasquet², Marc Chaumont³ and Dominique Fouchez¹

MICHELLE LOCHNER¹, JASON D. McEwen², HIRANYA V. PEIRIS¹, OFER LAHAV¹, AND MAX K. WINTER¹ Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; dr.m ² Mullard Space Science Laboratory, University College London, Surrey RH5 6NT, UK Received 2016 March 15; revised 2016 July 6; accepted 2016 July 6; published 2016 August 23

Deep Learning for Image Sequence Classification of

Kernel PCA for type Ia supernovae photometric classification

E. E. O. Ishida^{1,2*} and R. S. de Souza 3,1,2

Astronomical Events

Rodrigo Carrasco Davis^{1,7}, Guillermo Cabrera-Vives^{2,7}, Francisco Förster^{6,7}, Pablo A Estévez^{1,7}, Pablo Huijse^{3,7}, Pavlos Protopapas⁵, Ignacio Reyes^{1,7}, Jorge Martínez^{4,6,7} and Cristóbal Donoso²

Photometric classification of type la supernovae in the SuperNova Legacy Survey with supervised learning

ournal of Cosh by and Astroparticle Physics

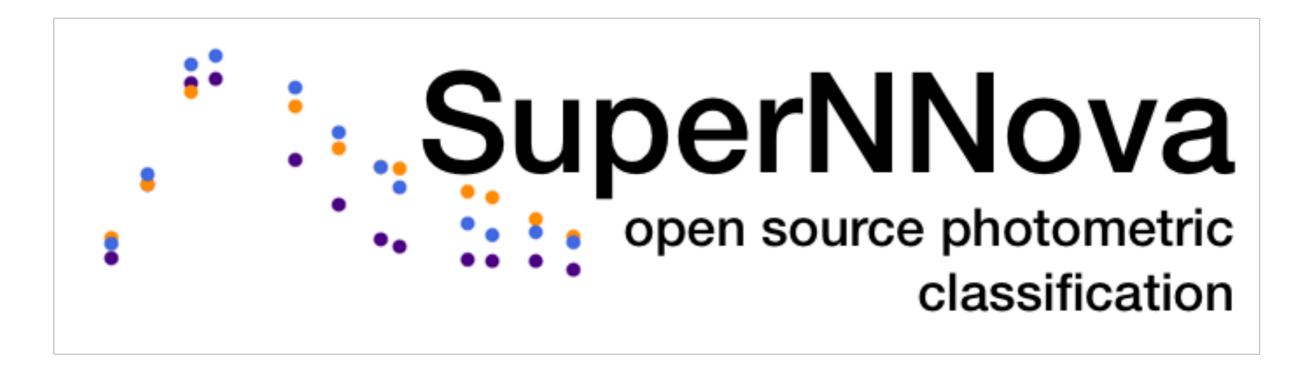
A. Möller, a,b,c V. Ruhlmann-Kleider, C. Leloup, J. Neveu, c,d N. Palanque-Delabrouille, J. Rich, R. Carlberg, C. Lidman f, b and C. Pritchetg Softmax

Mean Pooling

A. Möller CNRS/LPC Clermont

Poolin

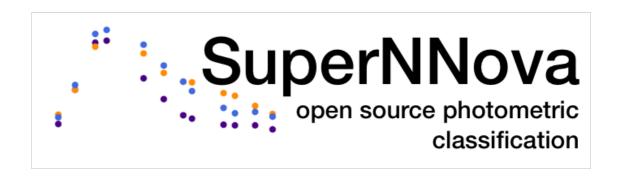
Ouput



Möller & de Boissière 2019 arXiv: 1901.06384

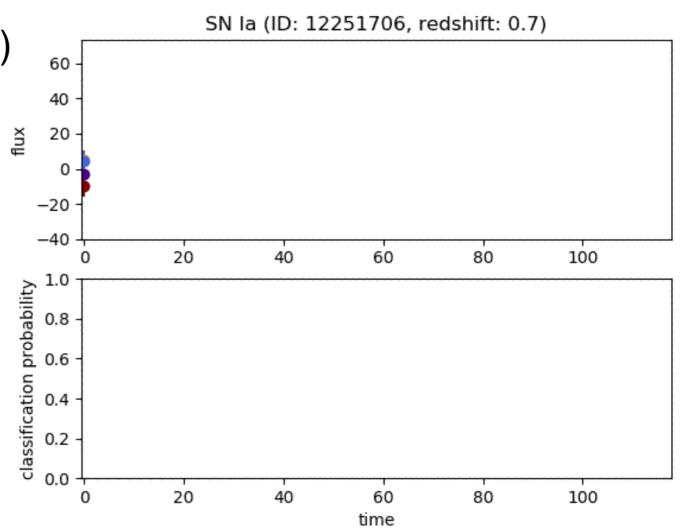
github: supernnova/SuperNNova

Deep Learning

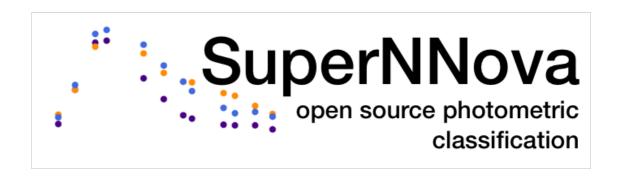


Recurrent Neural Networks (RNN)

- Recurrent Neural Network:
 - LSTM
 - GRU
- Bayesian RNNs
 - MC dropout (Gal+2016)
 - Bayes by Backprop (Fortunato+2017)
- Convolutional NN (soon!)

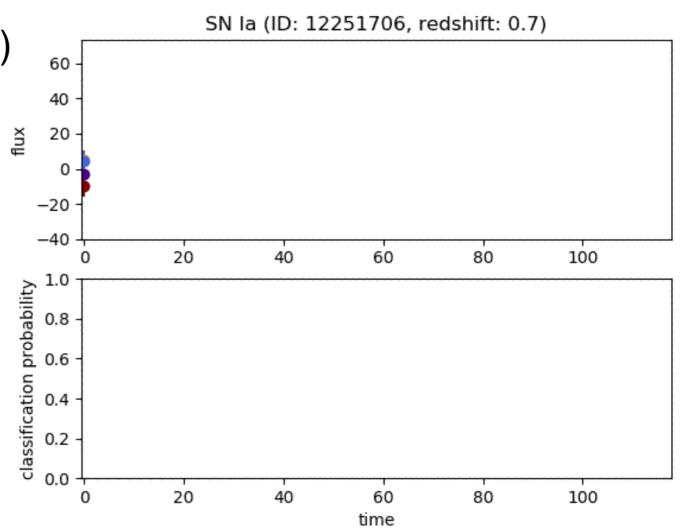


Deep Learning



Recurrent Neural Networks (RNN)

- Recurrent Neural Network:
 - LSTM
 - GRU
- Bayesian RNNs
 - MC dropout (Gal+2016)
 - Bayes by Backprop (Fortunato+2017)
- Convolutional NN (soon!)



lightcurve classification

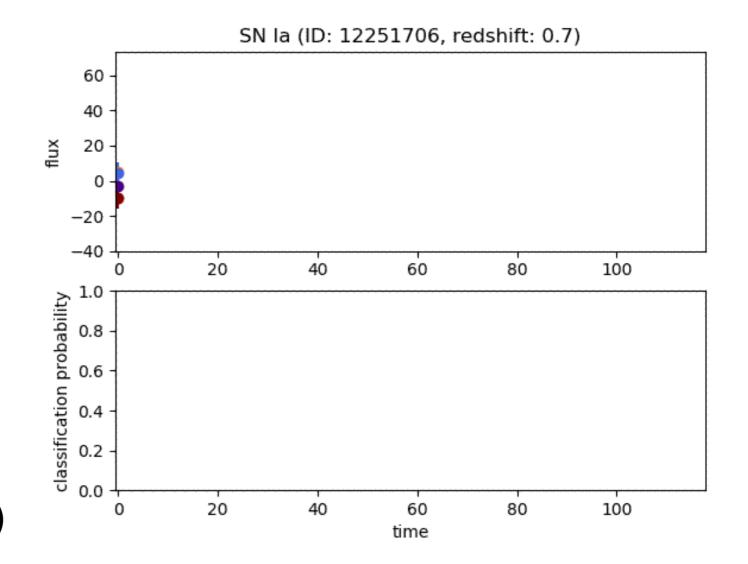
Fast: can classify up to 2,000 lcs/s

No interpolation necessary

Classification at any time step

inputs:

- flux & errors
- time
- other if available (e.g. redshifts)



lightcurve classification

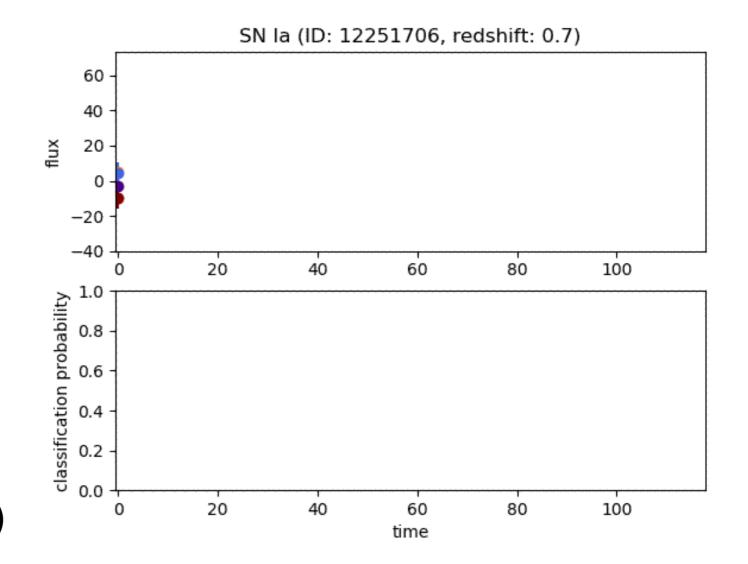
Fast: can classify up to 2,000 lcs/s

No interpolation necessary

Classification at any time step

inputs:

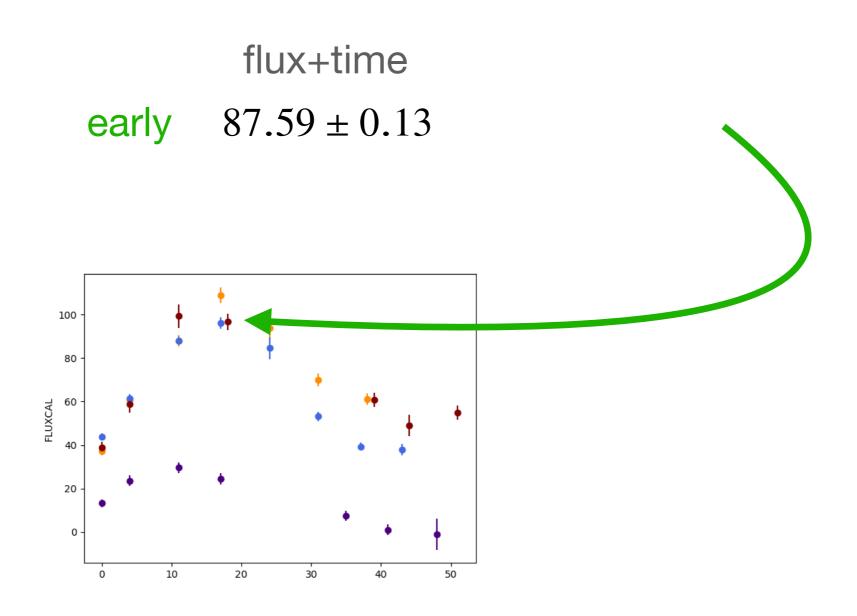
- flux & errors
- time
- other if available (e.g. redshifts)



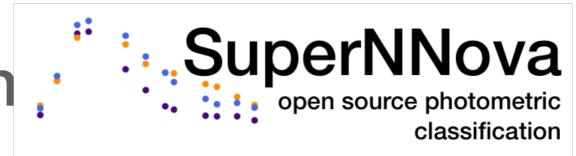
trained & tested with supernovae simulations: SNe type la vs. Non la

accurate classification ..

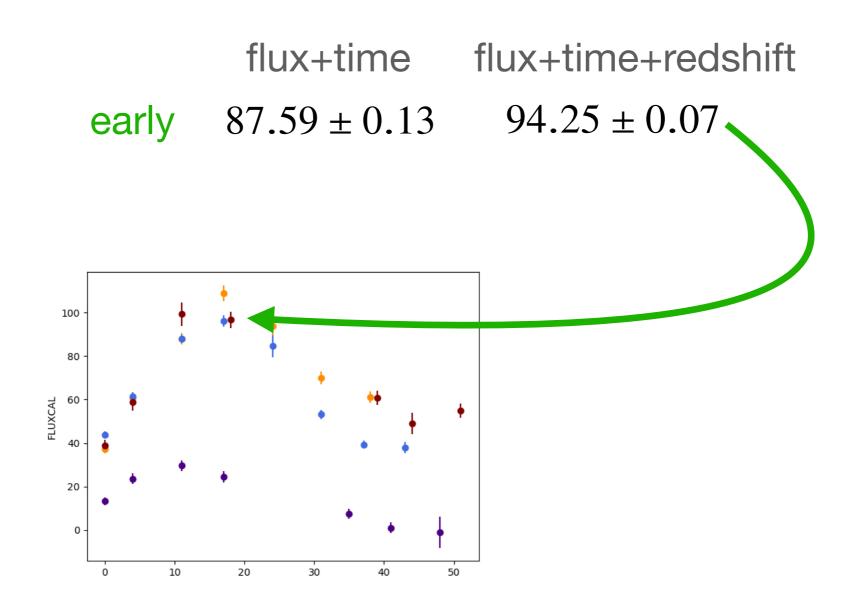
trained & tested with supernovae simulations: SNe type la vs. Non la



accurate classification ...

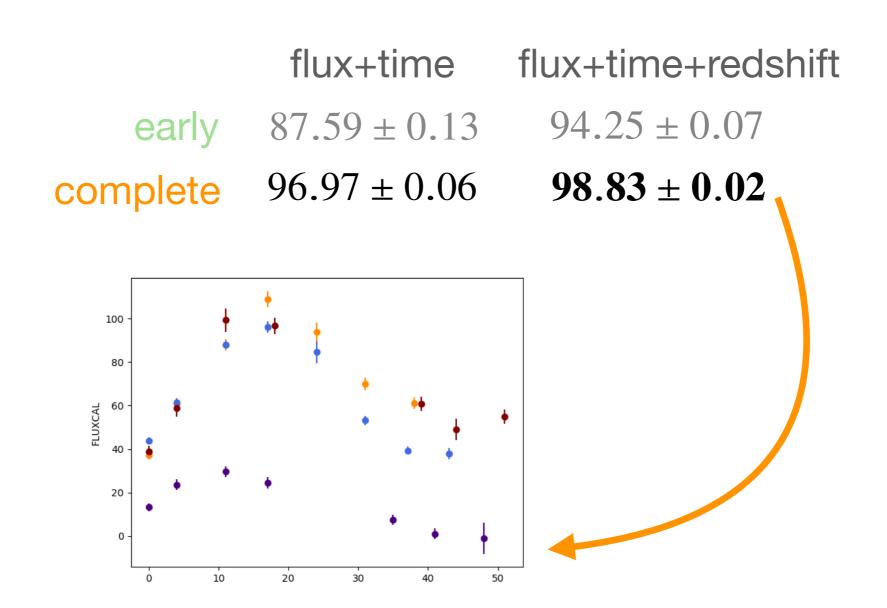


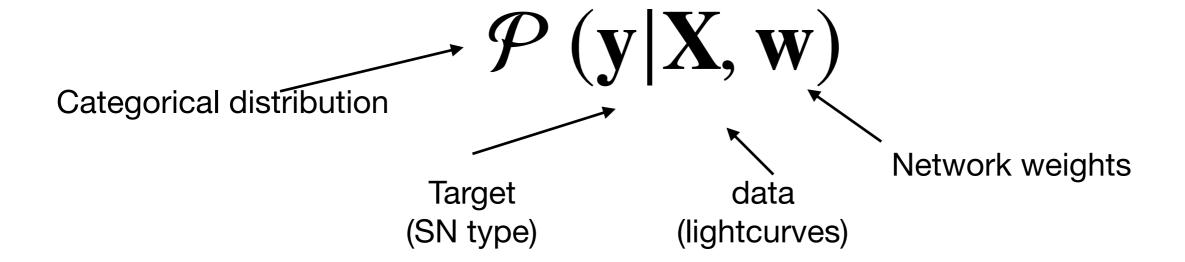
trained & tested with supernovae simulations: SNe type la vs. Non la

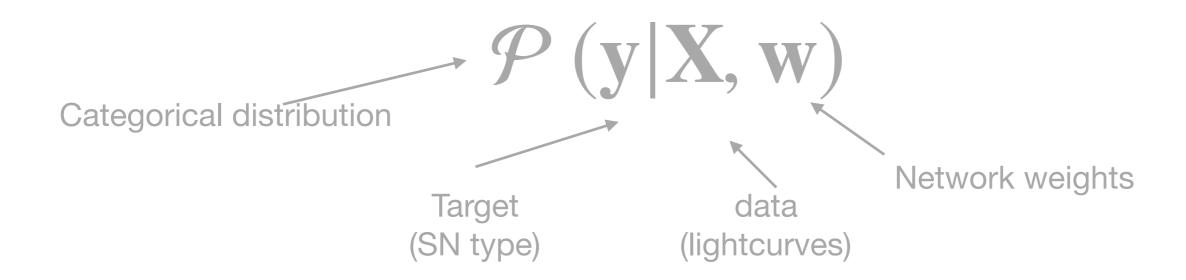


accurate classification ..

trained & tested with supernovae simulations: SNe type Ia vs. Non Ia



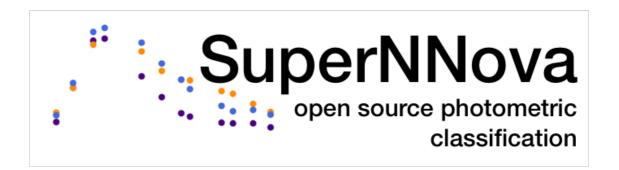




$$\mathcal{P}(\hat{\mathbf{y}} | \mathbf{x}) = \int \mathcal{P}(\hat{\mathbf{y}} | \mathbf{X}, \mathbf{w}) \mathcal{P}(\mathbf{w} | \mathcal{D}) d\mathbf{w}$$

untractable for NNs

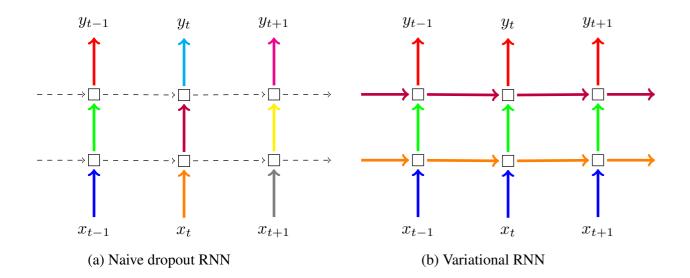
$$\mathscr{P}(\mathbf{w} \,|\, \mathscr{D}) pprox q(\mathbf{w} \,|\, heta)$$
 variational distribution

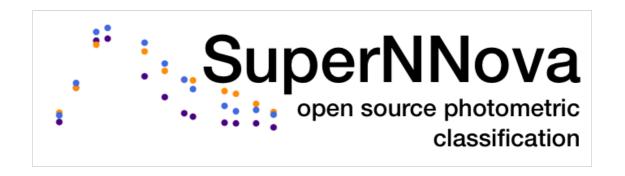


Approximating the variational distribution

1. MC dropout

Gal & Ghahramani 2016





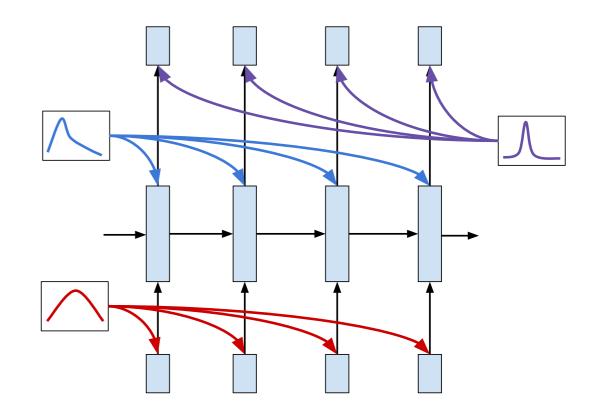
Approximating the variational distribution

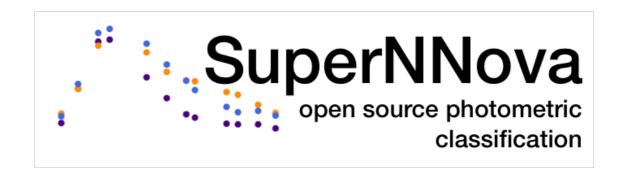
1. MC dropout

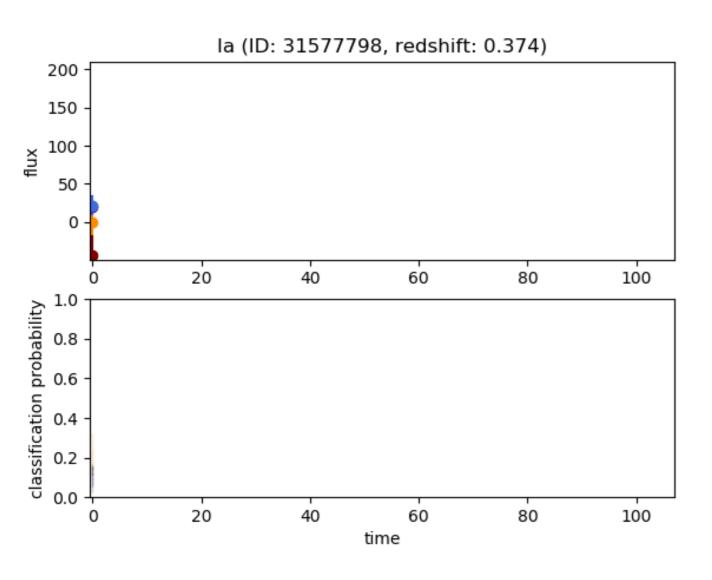
Gal & Ghahramani 2016

2. Bayes by Backprop

Fortunato+ 2017



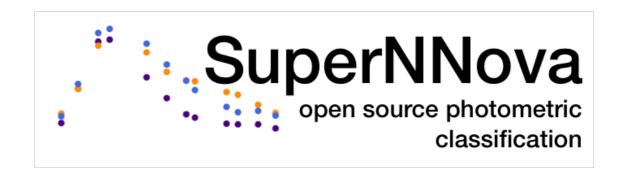


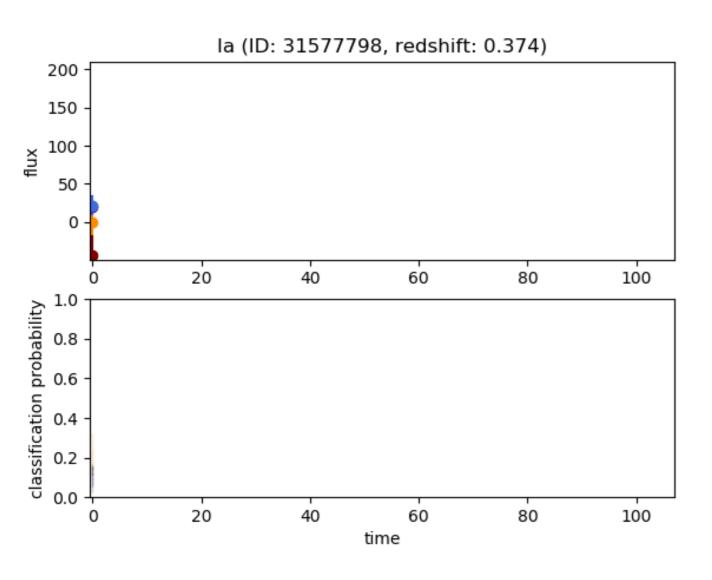


Posterior that provides epistemic uncertainties

Epistemic uncertainties:

express our <u>ignorance about the model</u> that generated the data.





Posterior that provides epistemic uncertainties

Epistemic uncertainties:

express our <u>ignorance about the model</u> that generated the data.

Current lightcurve classification limitations

Training sets are:

- 1. not representative
- 2. incomplete (we don't know/can't simulate)

3. ML probabilities as thresholds?

Distribution of properties of SNe

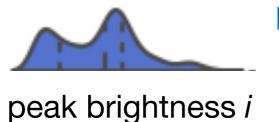
data

Simplistic simulation

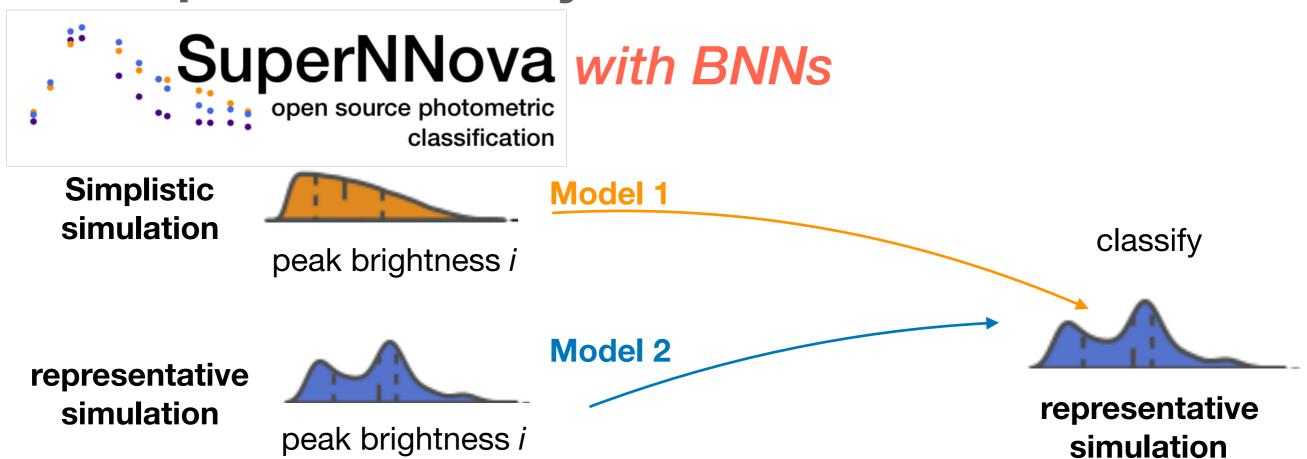
Model 1

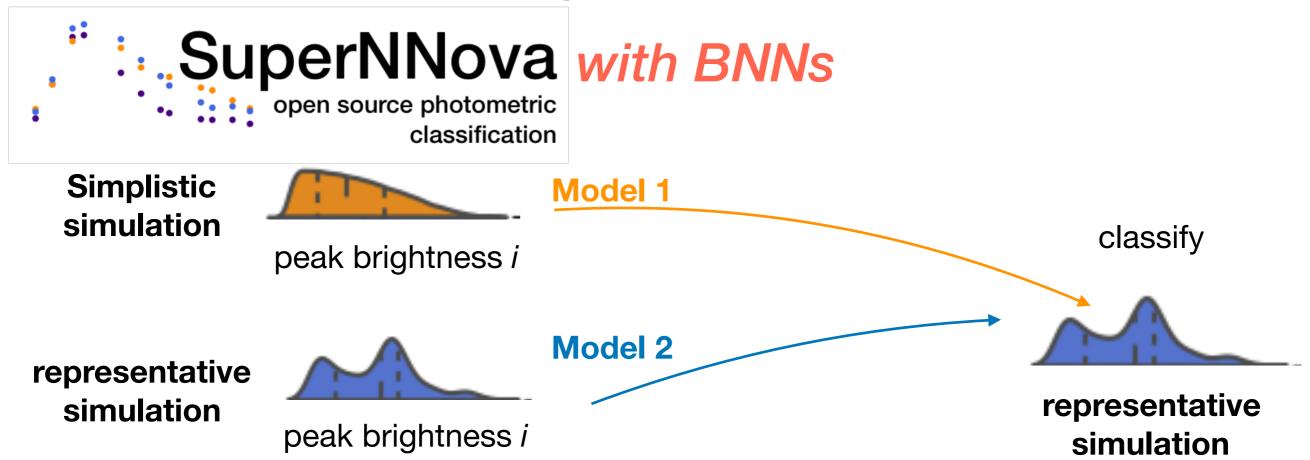
peak brightness i

representative simulation



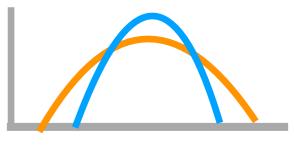
Model 2





accuracy changes slightly (<prob> are not the most indicative)

non-representative models give larger uncertainties!

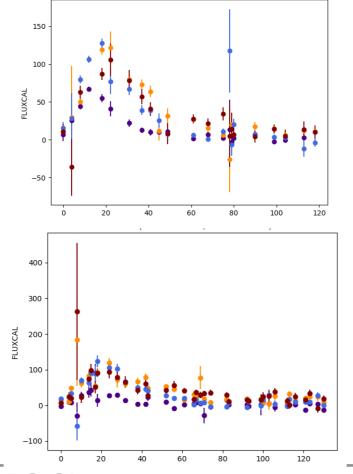


Probability

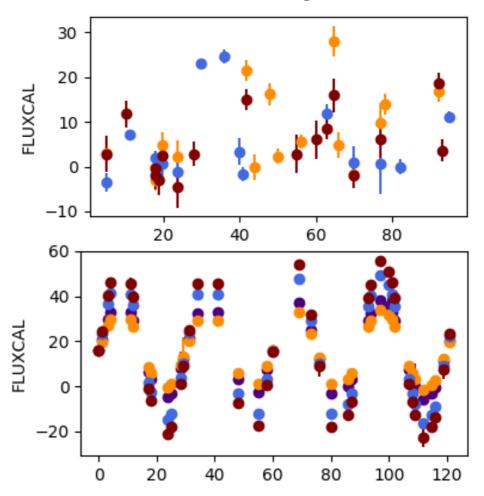
training set

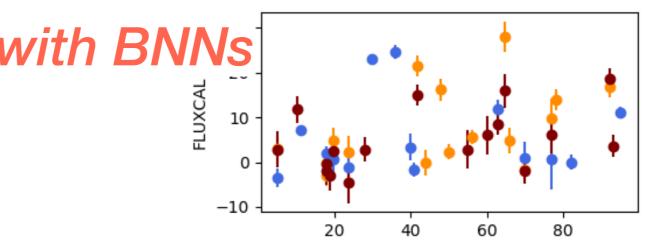
to classify

training set



to classify

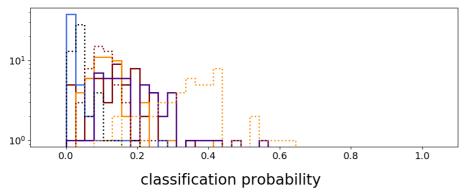




20

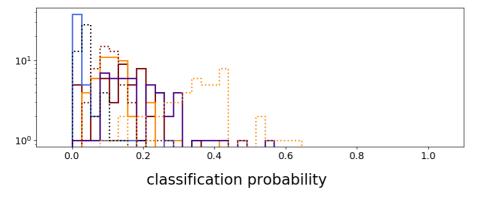
40

60



80

low probability for any class



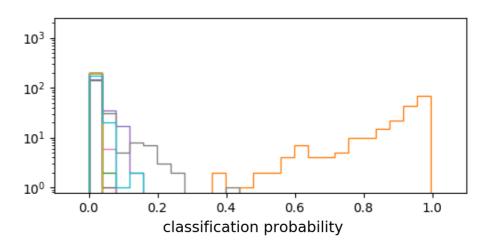
high probability for "less-known" class

60

40

20

80

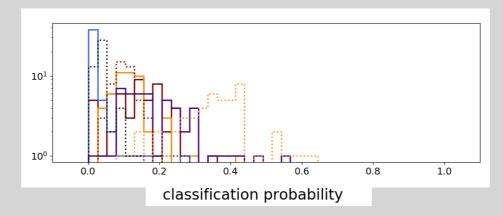


but... BNNs can give us highprobability but large uncertainty

3. ML probabilities as a threshold?

Selecting a transient sample:

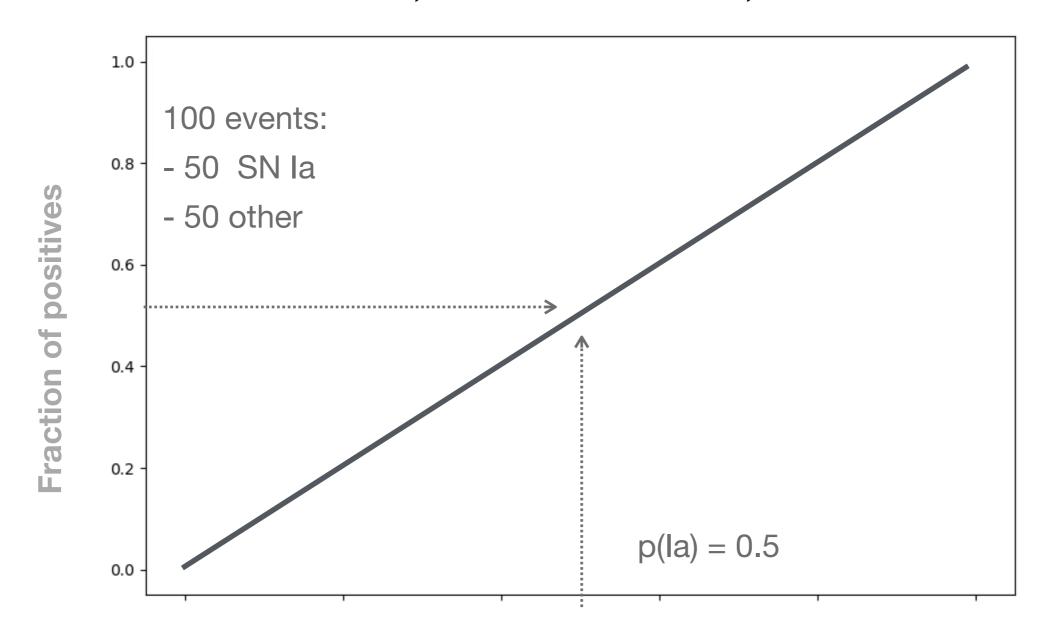
cutting on "classification probabilities" for selection



Can use a "weight" in the analysis using these "classification probabilities" *Jones+2018, Hinton+2018*

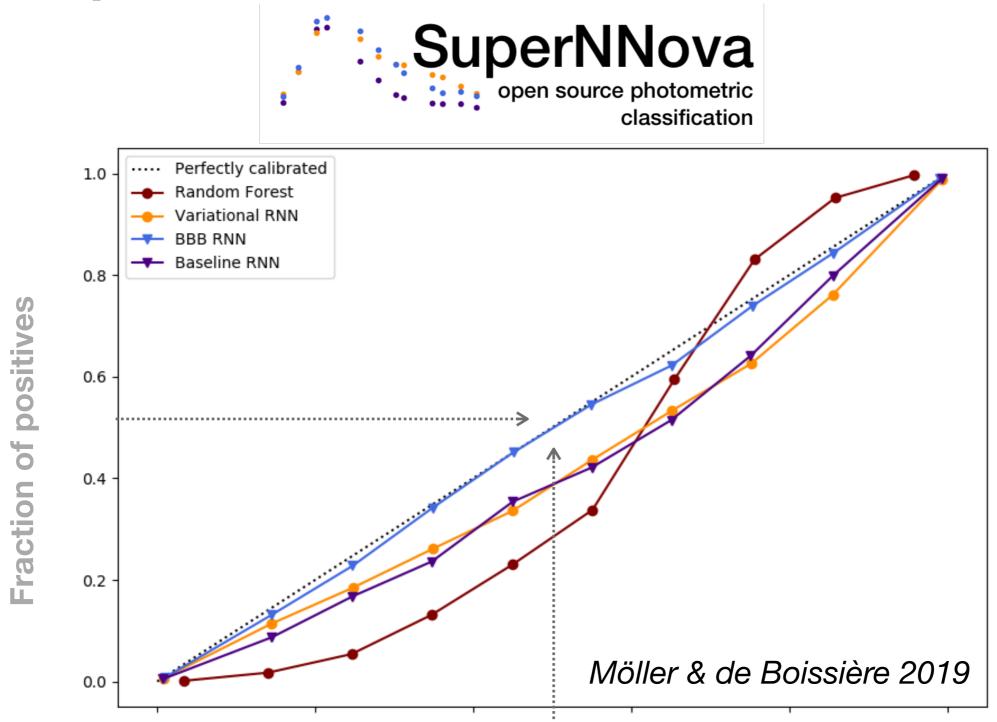
3. ML probabilities as a threshold?

De Groot+ 1983, Niculezcu-Mizil+ 2005, Guo+ 2017



Mean predicted probability

3. ML probabilities as a threshold?



Mean predicted probability

take away

Accurate: Early >86%, complete > 97%

Fast: up to 2,000 lcs/s

Bayesian RNNs

- promising classification method
- -> classification model uncertainty
- Representativity
- Anomalies
- Reliability

Can be applied to any lightcurves classification problem

Open source & documented

github: supernnova/SuperNNova

