

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

About the presenter

Dr. Luigi lapichino

- Astrophysics and Quantum
 Computing
 Application
 Specialist
- High Performance Systems Division, LRZ

- Team leader of the Application Lab for Astrophysics (LRZ AstroLab)
- Lead of Quantum Computing @ LRZ
- Expert in computational astrophysics and simulations
- Member of the PRACE High-Level Support Team

Email: <u>Luigi.lapichino@lrz.de</u>

Thanks to Nicolay Hammer and David Brayford (LRZ) for having provided many of the next slides

Leibniz Supercomputing Centre

Bavarian Academy of Sciences and Humanities

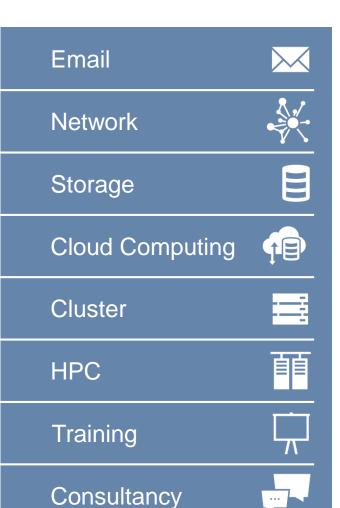
We are the computing backbone for advanced research science in Bavaria

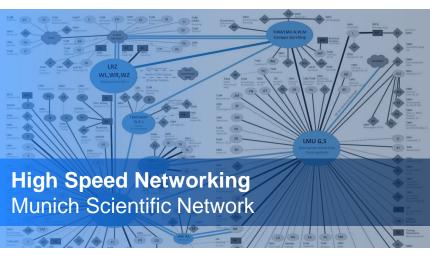
250 employees approx.

56years ofIT support

Computer Centre for all Munich Universities

Regional Computer Centre for all Bavarian Universities


National Supercomputing Centre (GCS)


European Supercomputing Centre (PRACE)

LRZ as an IT Center of Excellence

Operating Cutting-Edge IT Infrastructure

LRZ as IT Service Provider

For German Research

Gauss Centre for Supercomputing (GCS)

Alliance for Germany's Tier-0 high performance computing centers

- LRZ | Munich | SuperMUC-NG
- HLRS | Stuttgart | Hazel Hen
- JSC | Jülich | JUWELS

Founded 13. April 2007

LRZ as IT Service Provider

For European Research

Partnership for Advanced Computing in Europe (PRACE)

Federated, pan-European Tier-0 supercomputing infrastructure

25 Countries Hosting Members:

- GCS (LRZ, HLRS, JSC) BSC (Spain)
- CSCS (Switzerland)
- CINECA (Italy)
- GENCI (France)

PRACE 2: 2017 – 2020

LRZ Systems and Access

Local and Regional

Munich TUM and LMU

~30% of SuperMUC usage

*Students

Training future experts

Bavarian projects

<1 million CPU hours

SuperMUC-NG

Cluster

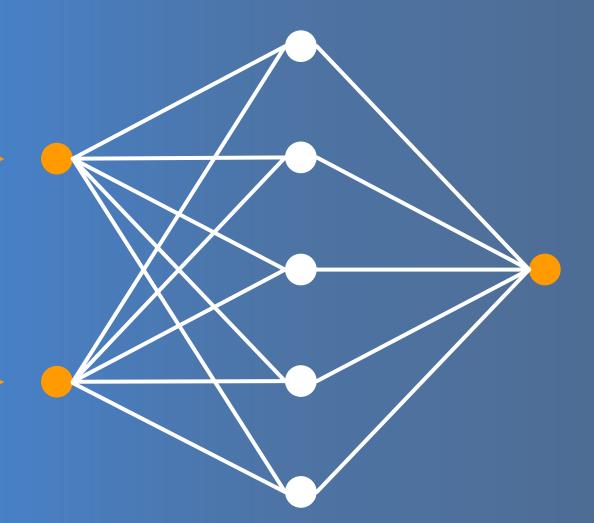
- CoolMUC-2
- CoolMUC-3
- Teramem
- DGX-1
- VM Ware
 High Availability Cloud
- Compute Cloud
 Open Stack
 Open Nebula

National and International

PRACE

GCS

High Performance Data Computing at LRZ



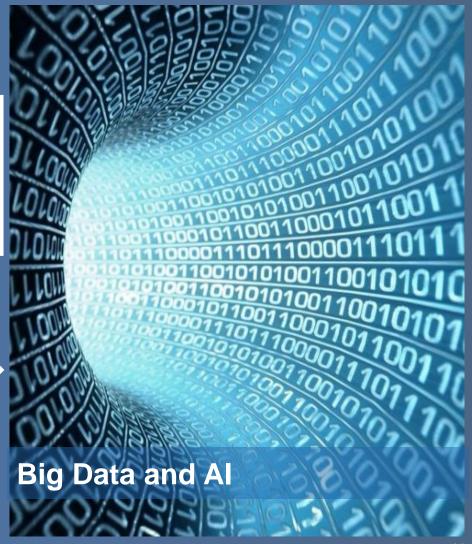
Emerging Communities

Increasing computing demands

HPC User Communities

Increasing analytics demands

Data Intensive Computing, Data Analytics & Al


A New World is Emerging: High Performance AI (HPAI)

New User Communities with New Workflows

Ability and Expertise to Target Large Scale Problems

THE COMPUTING INNOVATION CYCLE

Advanced computing and huge volumes of data creates new opportunities for information insight.

THE COMPUTING INNOVATION CYCLE

Advanced computing and huge volumes of data creates new opportunities for information insight.

High Performance AI (HPAI) in a Container

Transition AI algorithms from the laptop to supercomputer with minimal effort

"It just works"

M&S

- Equation based on model
- Computing driven
- Numerically intensive
- Creates simulations
- Monte Carlo
- Larger problems
- Iterative methods
- PDE

- Linear algebra
- Matrix operations
- Iterative methods
- Compute intensive
- Data transfer
- Predictive
- Probabilities
- Stencil codes
- Calculus
- Pattern recognition
- Graphs

Analytics

- Finds patterns
- Correlations in data
- Logic driven
- Creates inferences
- Knowledge discovery
- Graphs
- Data-driven science
- Predictions
- CNN
- RNN

HPAI @ LRZ

Differences Between HPC & Al

AI HPC

Large number of small files Small number of large files

Large memory nodes (+1TB) Memory per node (32/64GB)

Single node Multiple nodes

Single GPU/accelerator node Distribute compute over many nodes

Local node storage Typically diskless systems (no local storage)

Data transfer within a single node. (PCI bus)

Data transfer between multiple nodes

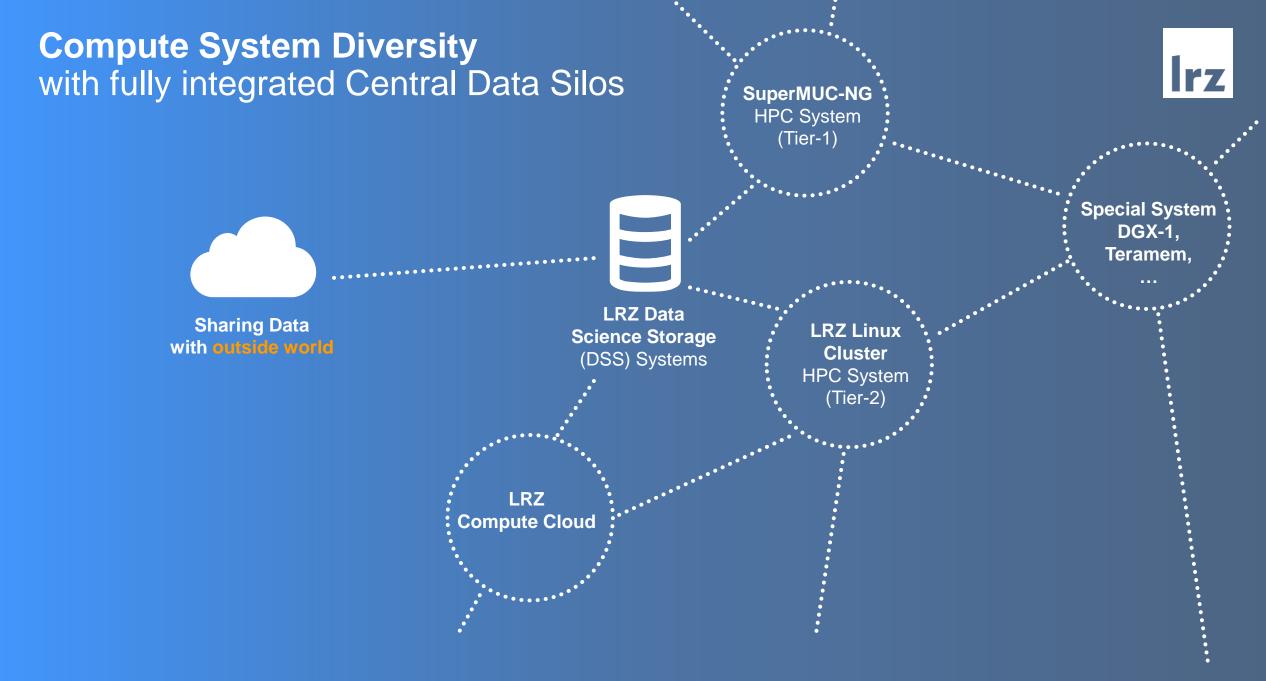
Matrices are typically small Medium to large matrices

Root privileges User privileges

HPAI @ LRZ

Requirements for AI on HPC

Compute intensive hardware


Optimized AI frameworks (TensorFlow, Caffe)

Optimized software (numerical libraries, Python)

HPC specific software (distributed computing, workload manager)

Method of deploying the AI software in a simple, straightforward and flexible way

Need to get to: "It just works"

Our training system: the LRZ Compute Cloud

A new service for LRZ users
It allows to upload and use your own virtual machines

Hardware overview:

- 82 nodes: Intel® Xeon® Gold 6148 (40 cores) @ 2.40GHz, 192 GB memory
- 32 nodes: Intel[®] Xeon[®] Gold 6148 (40 cores) @ 2.40GHz, 768 GB memory, each with 2x Nvidia Tesla V100 16 GB RAM
- 1 huge memory node: Intel[®] Xeon[®] Platinum 8160 (192 cores) @ 2.10GHz, 6000 GB memory