

Hands-on on classical Machine Learning

AI in Astronomy – ESO Garching | 22.7.2019 | Luigi Iapichino

Structure of this hands-on

Required **software** and how to install it

Login on the training system

ML algorithm I: K-means

ML algorithm II: Principal Component Analysis

Q&A

- We won't provide a thorough introduction on ML or its algorithms (although we
 present some basic theory)
- We want to provide information and working examples on how to accelerate them by using modern libraries
- Surely you can devise good test cases on astronomical problems and data sets
- If you think you got a nice project idea and you need support to develop it and a large HPC system to work on, talk with us!

https://doku.lrz.de/display/PUBLIC/Astro-Lab

Setting the stage: Intel® Distribution for Python

Irz

- Out-of-the-box Python distribution, highly optimized for high performance
- Seamless substitution of the system distribution
- It comes with optimized libraries (NumPy, SciPy, Scikit-learn, mpi4py...)
- On LRZ systems: available as module

```
<user>@login08:~> module av python
--/lrz/sys/share/modules/files/tools ---
python/2.7_anaconda_nompi python/2.7_intel(default) python/3.5_intel
python/3.6_intel
```


Current on-going research project: Python performance

- Application: yt (Python toolkit for data analysis and visualization of simulation datasets)
- Performance comparison of system (Anaconda) Python vs. Intel Python on different analysis types
- Intel Python's strength: exploiting parallelism

Cielo, Baruffa & Iapichino 2019, in preparation

Accessing the training system

Workshop Material

Go to the following url to download slides and samples: https://tinyurl.com/eso-ai-workshop

For installing on your own system:

- You need to have Conda on your system: https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
- Install Intel Optimized Software:
- > conda create -n intel-py -c intel install intelpython3_full==2019.4

• Open your browser and go to the following url:

http://138.246.233.51

Sign in

Warning: JupyterHub seems to be served over an unsecured HTTP connection. We strongly recommend enabling HTTPS for JupyterHub.

Username:

Password:

Sign In

- Choose a Username and Password for your access
- Then Sign in

💭 Jupyter	Logout	Control Pan	el
Files Running Clusters			
Select items to perform actions on them.	Uplo	ad New 🗸	C
□ 0 ■ / Name ↓	Last Modified	d File si	ze
The notebook list is empty.			

Ç jupyter	Logout Control Panel
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
	Name ↓ Last Mod ^{ir} File size
The notebook list is empty.	
 Go to the tab New for creating a Terminal window 	Upload New

Ç jupyter	Logout Control Panel
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
0 - 1	Name ↓ Last Modi / File size
The notebook list is empty.	
 Go to the tab New for creating a Terminal window Type the following in the Terminal Window to copy the workshop samples: cp -r /srv/workshop/*. 	Upload New - C Notebook: Python 3 Python [conda env:hvd-impi] Python [conda env:intel-py] Python [conda env:python-3.6] Python [conda env:root] *
<pre>jupyter-usertest@ai-workshop:~\$ cp -r /srv/workshop/* .</pre>	Other: Text File Folder Terminal

Ç jupyter	Logout	Contro	Panel	
Files Running Clusters				
Select items to perform actions on them.	Upl	oad N	ew 🗸 🕻	3
□ 0 ■ / Name ↓	Last Modifie	ed F	File size	
benchmarks al	cuni secono	li fa		
al 🗅 day1-ML	cuni secono	li fa		
al day2-DL al	cuni secono	li fa		
al	cuni secono	li fa	329 E	}
hvd-test.py	cuni secono	li fa	169 E	3
al	cuni secono	li fa	102 E	3

ML algorithm I: K-Means

Hands-on on classical ML | 22.7.2019 | Luigi Iapichino

K-means

- K-means is a clustering method
- It is used to group objects in a (highdimensional) sample
- K-means is based on centroids

Examples of astronomical applications:

- X-ray spectral classification of joung stellar clusters (Hojnacki et al. 2007)
- Asteroids spectra (Galluccio et al. 2008)
- SDSS galaxy spectra classification (Sanchez-Almeida et al. 2010)
- Stellar spectra (Simpson et al. 2012)

K-means Algorithm description

- k (number of clusters in the dataset) is an external free parameter
- k random objects are associated with initial centroids
- each object of the dataset is assigned to form a cluster with its closest centroid
- new centroids are computed by taking the average position of the objects in a given cluster
- Evaluate convergence condition
- Output: centroids location and association of the objects

Pros and cons:

- + Simple and relatively robust
- Finding the best *k* is not trivial
- Results might depend on initial centroids
- Sensitive to outliers and to features with different dynamical range \rightarrow data preparation

K-means

Hands-on: Color quantization using K-means

- An interesting application of K-means is to reduce the number of colors in a figure, while preserving the overall quality
- Initial data: every pixel has three color channels (RGB) expressed with 8 bit (0...255)
- For comparison, a clustering based on randomly picked colors will be shown.

The image of the Summer Palace (China) is among the sample data contained on scikit-learn

K-means Description of the hands-on

lrz

The hands-on is based on six main steps:

- Data preparation
- Computing the cluster centers
- Labelling the data
- From scikit-learn to daal4py: command line
- From scikit-learn to daal4py: monkeypatch in the script
- K-means with daal4py

- The files for the hands-on are in the directory /day1-ML/k-means
- There are ver... folders with a Python script, and its solution in a subfolder
- You can also use the Notebook: kmeans-hanson.ipynb
- Most of the exercise scripts are not working, because lines are missing!
- The solutions however do work, but I added a lot of blank spaces to avoid spoilers for the next steps ⁽³⁾

K-means Useful resources

The hands-on Python script comes mostly from the scikit-learn example on color quantization using K-means:

https://scikit-

learn.org/stable/auto_examples/cluster/plot_color_quantization.html#sphx-glrauto-examples-cluster-plot-color-quantization-py

K-means documentation on scikit-learn:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

K-means documentation on daal4py:

https://intelpython.github.io/daal4py/algorithms.html#k-means-clustering

K-means Data preparation

Go to day1-ML/k-means/ver0-datapreparation and open plot_color_quantization.py

First hands-on: exploring the initial data and their shape

Data preparation: changing to a representation based on floats in [0; 1]

Moreover: need to reshape the data to a 2D array (**second hands-on**)

Reference here:

https://docs.scipy.org/doc/numpy/referen
ce/generated/numpy.reshape.html

Please go to ver0-datapreparation/solution to check your work and run the script

K-means Computing the cluster centers

Go to day1-ML/k-means/ver1-cluster-centers and open plot_color_quantization.py

Three main tasks here:

- Defining a sub-sample of the data: this is unsupervised ML without a real training stage, however it can be useful to perform some operations on a data subsample
- Preparing timings: maybe a bit off-topic, but it always comes handy
- Computing the cluster centers: please use the documentation of KMeans in scikit-learn for it. It is also a good idea to print the computed centers.

Please go to ver1-cluster-centers/solution to check your work and run the script

K-means Labelling the data to create the color clusters

Go to day1-ML/k-means/ver2-labeling **and open** plot_color_quantization.py

First hands-on:

• Using the appropriate method of KMeans to assign the data to the centroids computed in the previous version

Second hands-on:

- For a quality comparison, let's identify random centroids and assign the data to them
- Reference: https://scikitlearn.org/stable/modules/generated/sklearn.utils.shuffle.html

Please go to ver2-labeling/solution to check your work and run the script

K-means Comparison of picture quality

Quantized image (64 colors, K-Means)

Quantized image (64 colors, Random)

You can make experiments modifying the number of clusters and sampling...

K-means From scikit-learn to daal4py

First method (day1-ML/k-means/ver3-rundaal4py): without changing at all the script

- A flag to monkey-patch is needed when running to script via python
- Can you find it in the documentation (or remember from the previous slides)?
- Reported in solution

Second method (day1-ML/k-means/ver4daal4py-patch): minimal changes to monkey-patch the script

- Again: it was introduced on passing, but you can check in the documentation
- Please go to ver4-daal4py-patch/solution to check your work and run the script
- In both methods: what about the performance of your script?

K-means with daal4py

Go to day1-ML/k-means/ver5-daal4py and open kmeans-daal4py.py

- The example is taken from the daal4py documentation, slightly adapted to resemble the previous one.
- No hands-on here, but you can read the code and the documentation

Which execution model is more convenient?

- Running scikit-learn uses TBB under the hood
- Patching it with daal4py keeps the code more similar in terms of algorithms, and boosts the performance
- Using the daal4py classes explicitly allows distributing multiple nodes with Intel MPI.

E.g.: mpirun -prepend-rank -genv I_MPI_DEBUG=5 -n 2 python -u kmeansdaal4py.py

ML algorithm II: PCA

Hands-on on classical ML | 22.7.2019 | Luigi Iapichino

Dimensionality reduction algorithms

High-dimensional datasets are more and more common in data science

Their analysis often involves a **dimensionality reduction**:

- selecting a subset of features which best describes the dataset
- constructing a new set of features which provides a good description

Why to reduce data dimensionality?

- Removing noise
- Making the results easier to understand
- Making the dataset easier to be used (data handling and movement)
- Reducing computational cost of algorithms (data processing)

These points are crucial for upcoming instruments like SKA, where retaining the full complexity of the raw data will be infeasible.

Principal component analysis (PCA)

- PCA: popular method for dim. reduction
- In essence, it is a coordinate transformation in the dataset
- In the new coordinate system, the first coordinate (component) is chosen so to have the largest variance in the data.
- The second component is orthogonal and has the second largest variance.
- Number of components = number of features of the data.
- Lower number of components → dimensionality reduction.

PCA for a formal viewpoint

- Consider the n × m matrix of n data points with m features each
- Compute the **covariance matrix** *C* of it
- Diagonalise C
- Sort its (positive) eigenvalues by size
- Identify in this way the eigendirections where the data have maximal variance → the principal components

Examples of astronomical applications:

- Decomposition of quasar spectra (Boroson & Green 1992)
- Physical parameters of stellar atmospheres (Zhang et al. 2006)
- Properties of SDSS galaxy spectra (Vandeplas et al. 2012)
- Optimal base for cosmological observables (Maturi & Mignone 2009)

PCA Description of the hands-on

Very simple test:

- Reading data from a file (1000 x 2)
- Applying PCA to find the principal component
- Applying a transformation to the "collapsed" data point, to overplot them with the original data

This procedure will be applied in three different versions of the script, using **Numpy**, **scikit-learn** and **daal4py**

Plot from the original Numpy test (Harrington et al. 2012)

The hands-on Python script (Numpy version) comes originally from the book Machine Learning in Action (Harrington 2012), Manning Publications https://www.manning.com/books/machine-learning-in-action

PCA documentation on scikit-learn:

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

PCA documentation on daal4py:

https://intelpython.github.io/daal4py/algorithms.html#principal-componentanalysis-pca

Concluding remarks

HPC is quickly changing its workloads from traditional compute to data-intensive applications

Python has become a full-fledged language for HPC

Performance at scale depends on the same features for all problems:

- Concurrency and parallelism at all levels
- Access to data in memory

Using optimized libraries addresses the above points and is crucial in ML on all system scales, up to HPC

The HPC environment is striving for fully supporting ML and data analytics applications. **Is your code ready**?

References and other resources

lrz

https://software.intel.com/en-us/distribution-for-python https://scikit-learn.org/stable/index.html https://intelpython.github.io/daal4py/contents.html

Schäfer & Bartelmann 2017, *Statistics: the logic of science*, online document Harrington 2012, *Machine Learning in Action*, Manning Publications Baron 2019, *Machine Learning in Astronomy: a practical overview.* ArXiv: 1904.07248