#### Spatial characterization of the trailing and leading limbs of WASP-76b: Detection of $H_2O$ and HCN at high-resolution. Alejandro Sánchez-López

#### Collaborators: R. Landman, N. Casasayas-Barris, A. Kesseli, and I.A.G. Snellen



ESO's Exoplanet Atmospheres Workshop 27/08/2021

Image credit: Christine Daniloff/MIT, Julien de Wit





A. Sánchez-López

#### • <u>Ultra-hot Jupiters</u> (even hotter...): Particularly exotic targets with dayside temperatures > 2000 K (KELT-9 b, WASP-33 b, WASP-76 b, etc.).







Wardenier et al. (2021), MNRAS, Vol. 506, Issue 1

#### A. Sánchez-López

- Ultra-hot Jupiters (even hotter...): Particularly exotic targets with dayside temperatures > 2000 K (KELT-9 b, WASP-33 b, WASP-76 b, etc.).
- Close-in orbit causes large change in viewing angle of the planet from Earth (about 30° WASP-76 b).







Wardenier et al. (2021), MNRAS, Vol. 506, Issue 1

#### A. Sánchez-López

- <u>Ultra-hot Jupiters</u> (even hotter...): Particularly exotic targets with dayside temperatures > 2000 K (KELT-9 b, WASP-33 b, WASP-76 b, etc.).
- Close-in orbit causes large change in viewing angle of the planet from Earth (about 30° WASP-76 b).
- Atmospheric regions probed through the leading and trailing limbs are significantly different. Shown studying Fe I in Ehrenreich et al. (2020) (confirmed in Kesseli & Snellen, 2021).





- 700
- Signal is progressively blueshifted as evening terminator comes into view.
- In 2nd half, the morning terminator region has rotated out of view and zero velocity component disappears, pointing at condensation in nightside.
- •But, condensation might not be required: uniform iron abundances and a large temperature contrast between limbs can also cause asymmetry (*Wardenier et al. 2021, see Joost's talk!*).



### Main scientific question

Could this same behaviour be observed in molecular absorption signals? 





## Main scientific question

A. Sánchez-López

- Could this same behaviour be observed in molecular absorption signals?
- Molecules such as  $H_2O$  are not expected to rain out in the nightside —> Potential asymmetries due to very different day and nightside scale heights?





# **Observations and analysis**

## October, 2019.



Wavelength [µm]

A. Sánchez-López

O Public near-infrared high-resolution spectra (R ~ 80,400) of WASP-76b observed with CARMENES on 4th

Slide 7



# **Observations and analysis**

# October, 2019.

A. Sánchez-López



**O** Cross-correlation of residual spectra with absorption templates of H<sub>2</sub>O, HCN, NH<sub>3</sub>, CO, CO<sub>2</sub>

O Public near-infrared high-resolution spectra (R ~ 80,400) of WASP-76b observed with CARMENES on 4th

Slide 8



# **Results: Detection of H2O and HCN**



2020).

Blueshifted by -12 km/s (day to nightside winds). Potentially from evening terminator?

Kp displaced. Max. significance ~249 km/s. Expected ~196 km/s. No clear explanation for mismatch.

A. Sánchez-López et al. in prep.

#### A. Sánchez-López

H2O detection at a SNR ~ 5.5 (already detected) at low-res, see Tsiaras et al. 2018; and Edwards et al.

Slide 9







## **Results: Detection of H2O and HCN**



displaced!

A. Sánchez-López et al. in prep.

#### A. Sánchez-López



#### HCN detection at a SNR ~ 5.2.

#### Signal is redshifted by about +20km/s.

Atmospheric layers moving away from the observer, although uncertainties are large.

# Kp of maximum significance signal also

Slide 10

#### **Results: Formal detection of H2O and HCN** NH<sub>3</sub>







-1

-2

-3

Kp of maximum significance signal also displaced... but signal is too weak to confirm.

A. Sánchez-López et al. in prep.

#### A. Sánchez-López



NH3 tentative signal at SNR of 4.2.

**Blueshifted by ~ -6 km/s.** 

Slide 11

## **Results:** Time-dependence of signals. Expected Kp (196 km/s)





A. Sánchez-López



A. Sánchez-López et al. in prep.



#### **Results:** Time-dependence of signals. Max. Significance Kp



#### Marginally stronger in 2nd half, but low observational evidence.

A. Sánchez-López

Slide 13

#### **Contribution mainly** from 1st half.



## Summary and conclusions

 $\circ$  Formal detection of H<sub>2</sub>O and HCN in the transmission spectra of WASP-76b. Tentative signal of NH<sub>3</sub>.

**O** Puzzling Doppler shifts and Kp values.

- No clear explanation for Kp ~ 250 km/s (expected 196 km/s).
- $\gg$  H<sub>2</sub>O blueshifted by -12 km/s. Mainly from evening terminator? (Low observational evidence).
- HCN signal at +20 km/s. Disappears in 2nd half of the transit. Coming from the morning terminator?

**O** New observations and better SNRs needed to refute or confirm the results!!







