Transmission spectra of multi-dimensional atmospheric simulations: computation and applications

TauREx (1D/2D) & Pytmosph3R 2.0

Aurélien Falco (LAB Bordeaux - ECLIPSE team - Whiplash ERC)

Transmission spectrum

- Atmospheric grid

Transmission spectrum

- Atmospheric grid - Rays of light \rightarrow Optical depth $\xrightarrow{integral}$ Transmittance \rightarrow Spectrum

Transmission spectrum

- Atmospheric grid - Rays of light \rightarrow Optical depth $\xrightarrow{integral}$ Transmittance \rightarrow Spectrum

- Very fast
- Retrievals
- Biases (Pluriel et al., 2020)

Transmission spectrum

- Atmospheric grid - Rays of light \rightarrow Optical depth $\xrightarrow{integral}$ Transmittance \rightarrow Spectrum

1**D**

- Very fast
- Retrievals
- Biases (Pluriel et al., 2020)

- Realistic structure
- Too slow for retrievals (?)

Transmission spectrum

- Atmospheric grid
- Rays of light

Optical depth $\xrightarrow[integral]{}$ Transmittance \rightarrow Spectrum

1D

- Very fast
- Retrievals
- Biases (Pluriel et al., 2020)

2D

- Fast enough (for retrievals)
- Day-night dichotomy of Ultra Hot Jupiters

- Realistic structure
- Too slow for retrievals (?)

Transmission spectrum

- Atmospheric grid
 Rays of light

ptical depth
$$\xrightarrow[integral]{}$$
 Transmittance \rightarrow Spectrum

1D (TauREx)

- $N_{z,lay}$ layers (ℓ)

2D (TauREx)

- $N_{z,lay}$ layers (ℓ)
- N_{α} slices (solar zenith angle)

3D (Pytmosph3R)

- $N_{z,lay}$ layers (ℓ)
- N_{lat} latitudes (φ)
- N_{lon} longitudes (λ)

Coordinate system: from levels to altitude coordinates

Coordinate system

- Radial coordinate: layers & levels (1)
- Horizontal grid: (α^*) in 2D or (ϕ, λ) in 3D

Input data for each cell (*l*) or (l, α^*) or (l, ϕ, λ)

- Pressure
- Temperature
- Gas Volume Mixing Ratios
- Aerosols Mass Mixing Ratios

Coordinate system: from levels to altitude coordinates

Coordinate system

- Radial coordinate: altitude (z)
- Horizontal grid: (α^*) in 2D or (ϕ, λ) in 3D

Interpolation of (z, ϕ, λ) using altitude

- Pressure
- Temperature
- Gas Volume Mixing Ratios
- Aerosols Mass Mixing Ratios

Rays subdivision through the altitude-based grid

Compute intersection points coordinates

1D

- Circles at each altitude (point j in blue)

- 2D
- Circles at each altitude (point j in blue)
- Solar zenith angle lines (point k in red)

- Spheres at each altitude (point j in blue)
- Latitudinal cones (point k in red)
- Longitudinal planes (point k in red)

Rays subdivision through the altitude-based grid

Distance between points ($\Delta \ell$)

- Sort points according to their distance *x* to the terminator
- Cartesian distance $d\ell$ between two successive points
- Coordinates of each cell (2D/3D)
 - List for each ray (to get *P*, *T*, *x*)
 - · Global dictionary for computing opacities (to avoid computing twice a cell)

Optical depth

- $d\ell$ is the length of the segment of the ray at coordinates c
- Exo_k (Leconte, 2020) handles the opacities:
 - · Correlated-k and cross-sections tables from multiple sources
 - Molecular, continuum absorptions, Rayleigh and Mie scatterings...

Integral \rightarrow transmission spectrum

$$\Delta_{\lambda} = \frac{R_p^2 + \sum\limits_{\rho,\theta} \left(1 - e^{-\tau_{\lambda}(\rho,\theta)}\right) S_{\rho}}{R_s^2},$$
(2)

with $S_{\rho} = 2 \frac{(\rho + d\rho/2) d\rho}{N_{\theta}}$, where N_{θ} is the number of angular points in the grid of rays

Three models - 1D - 2D - 3D

Test cases

- Isothermal atmosphere
- 2D temperature map (day \rightarrow night)
- 3D GCM (WASP-121b)

Isothermal atmosphere

Isothermal (T = 2500K)

Isothermal (T = 2500K)

2D

11

2D retrievals: performance of TauREx models

Retrievals → run many times one model

Optical depth

$$\mathcal{O}\left(\left(\frac{N_{z,\text{lay}}^2}{2} + N_{z,\text{lay}} \cdot N_{\alpha}\right) \cdot N_{\lambda}\right)$$

Interpolation of the opacities

$$\mathcal{O}\left(C \cdot N_{z, \text{lay}} \cdot N_{\alpha} \cdot N_{\lambda} \cdot N_{\text{mol}}\right)$$

 $N_{z,lav}$: number of layers; N_{α} : number of angles; N_{λ} : number of wavelengths; N_{mol} : number of molecules

		N_{α} (2D)				
$N_{z,lay}$	1D	2	10	20	30	
100	0.26	0.52	1.20	1.99	2.80	
200	0.78	1.73	3.05	4.72	6.32	

 Table 1: Average time (s) to run one TauREx model. Molecular absorption only (no Rayleigh scattering

nor CIA), with four molecules on 39124 wavelengths from 0.3 to 15 μ m.

2D retrieval of WASP-121b

3D (T_{eq} = **2100 K**)

Pytmosph3R 2.0 - Pytmosph3R 1.3

~10-50 ppm

3D (T_{eq} = **2100** K)

Rotation of the planet during transit: WASP-121b

	Ingress	Early	Mid	Late	Egress
Orbital phase ϕ	-15°	-13°	0°	+13°	15°

Rotation of the planet during transit: WASP-121b

	Ingress	Early	Mid	Late	Egress
Orbital phase ϕ	-15°	-13°	0°	+13°	15°

Rotation of the planet during transit

Three models

- 1D & 2D with TauREx
- 3D with Pytmosph3R

Three models

- 1D & 2D with TauREx
- 3D with Pytmosph3R

2D (TauREx)

- Validated in isothermal with TauREx (1D), in 2D with Pytmosph3R
- Fast enough for retrievals (Zingales et al. (2021) in prep)

Three models

- 1D & 2D with TauREx
- 3D with Pytmosph3R

2D (TauREx)

- Validated in isothermal with TauREx (1D), in 2D with Pytmosph3R
- Fast enough for retrievals (Zingales et al. (2021) in prep)

3D (Pytmosph3R)

- Rotation: infer asymmetric east-west characteristics of the atmosphere

Three models

- 1D & 2D with TauREx
- 3D with Pytmosph3R

2D (TauREx)

- Validated in isothermal with TauREx (1D), in 2D with Pytmosph3R
- Fast enough for retrievals (Zingales et al. (2021) in prep)

3D (Pytmosph3R)

- Rotation: infer asymmetric east-west characteristics of the atmosphere

http://perso.astrophy.u-bordeaux.fr/~jleconte/pytmosph3r-doc/index.html

New release very soon!

- Papers under reviews (Falco et al., 2021; Pluriel et al., 2021)
- Parallel
- Emission
- Lightcurve

- Al-Refaie, A. F., Changeat, Q., Waldmann, I. P., and Tinetti, G. (2019). TauREx III: A fast, dynamic and extendable framework for retrievals.
- Caldas, A., Leconte, J., Selsis, F., Waldmann, I., Bordé, P., Rocchetto, M., and Charnay, B. (2019). Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients. *Astronomy & Astrophysics*, 623:A161.
- Falco, A., Zingales, T., Pluriel, W., and Leconte, J. (2021). Computation of transmission spectra using a 1D, 2D or 3D atmospheric structure. *Unpublished manuscript*.
- Leconte, J. (2020). Spectral binning of precomputed correlated-k coefficients. *arXiv preprint arXiv:2012.01428*.
- Pluriel, W., Leconte, J., Parmentier, V., Zingales, T., and Falco, A. (2021). Evolution of the biases in retrieved atmospheric composition of hot Jupiters. *Unpublished manuscript*.
- Pluriel, W., Zingales, T., Leconte, J., and Parmentier, V. (2020). Strong biases in retrieved atmospheric composition caused by day-night chemical heterogeneities. *A&A*, 636:A66.
- Zingales, T., Falco, A., Pluriel, W., and Leconte, J. (2021). TauREx 2D: Modelling 2D effects in retrieval. *Unpublished manuscript*.