USING A VARIETY OF MOLECULES IN EXOPLANET ATMOSPHERE RETRIEVALS

Katy Chubb, SRON Netherlands Institute for Space Research / St Andrews University

Image: David A. Aguilar, Harvard-Smithsonian Center for Astrophysics

- How do we know what these molecular spectra look like?
- What are some of the challenges associated with finding out?
- How do we use these in our exoplanet retrieval models
- Differences between data for low and high resolution observations

Laboratory molecular spectra observations

typically valid only at the temperature & pressure of measurement

Planet Temperature & Size

Energy levels (typically millions) Allowed transitions (millions – billions)

Energy levels (typically millions) Allowed transitions (millions – billions) Einstein-A coeffs (Probability of transitions)

THEORETICAL DATA: VALID UP TO HIGH TEMPERATURES

•		•
	ne	list:

1	0.000000	1	0	0	0	0	0	0	A1	60303	1	2.49323641E-01	1941.016206
2	1594.746306	1	0	0	0	0	1	0	A1	60304	1	9.41024052E-01	1958.409110
3	3151.629850	1	0	0	0	0	2	0	A1	60305	1	1,74883981E+00	2179.706146
4	3657.053255	1	0	0	0	1	0	0	A1	60306	1	6.53131226E-03	2567.657191
5	4666.790461	1	0	0	0	0	3	0	A1	60307	1	1.78850008E-02	2706.875827
6	5234.975555	1	0	0	0	1	1	0	A1	60308	1	3.21961708E-04	2768.881548
7	6134.015008	1	0	0	0	0	4	0	A1	60309	1	7.53501237E-02	3212 444279
8	6775.093508	1	0	0	0	1	2	0	Al	60310	1	1 64101339E-02	3228 043358
9	7201.539855	1	0	0	0	2	0	0	A1	60310	1	2 (09276215-02	2270 204441
10	7445.056211	1	0	0	0	0	0	2	A1	00311	1	2.4782/0212+01	3278.384401
11	7542.372492	1	0	0	0	0	5	0	A1	60312	1	5.37295273E+00	3294.955008
12	8273 975695	1	9	a	0	1	3	9	41	60313	1	1.56573889E-01	3387.151052
13	8761 581581	1	0	0	0	2	1	0	A1	60314	1	7.40913751E-02	3394.615642
14	8860 050054	1	a	a	a	ā	6	a	41	60315	1	1.11121145E-03	3417.184240
15	9000.136035	1	0	0	0	9	1	2	A1	60316	1	8.12508441E-05	3617.496491
16	9724.195645	1	0	0	0	1	4	ñ	A1	60317	1	3.98761139E-01	3877.194074
10	//24.1/0040	-	0	~	•	-	-	•	n±	Contraction (Contraction)	1.00		

List of energy levels, transitions, A-coeffs

Cross-sections:

Pressure and temperature dependent spectra (line positions from energy level transitions + line strengths from A-coeffs)

LINE BROADENING:

- Natural broadening (Pauli exclusion principle)
- Temperature broadening (due to molecules moving away and towards us – slight blue and red shift to either side)
- Pressure broadening (due to other atoms and molecules colliding with the molecule as it absorbs)

LINE BROADENING:

- Temperature broadening (due to molecules moving away and towards us – slight blue and red shift to either side)
- Pressure broadening (due to other atoms and molecules colliding with the molecule as it absorbs)

LINE BROADENING:

H2/He broadening for "hot Jupiter" exoplanets

 Pressure broadening (due to other atoms and molecules colliding with the molecule as it absorbs)

Software to compute spectra (@ particular temp/pressure) from linelist (temp/pressure independent)

exocross.readthedocs.io

ExoMolOP

Database of opacities (cross-sections and k-tables) for characterizing exoplanet atmospheres tailored for four atmospheric retrieval codes

ExoMolOP

Database of opacities (cross-sections and k-tables) for characterizing exoplanet atmospheres tailored for four atmospheric retrieval codes

H2/He broadening for "hot Jupiter" exoplanets: new crosssections required for other planets

PRESSURE TEMPERATURE GRID

CORRELATED-K TABLES

• Lower resolution required than for sampled cross-sections

From Min 2018 <u>arXiv:1710.01997</u>

C₂H₂ AT DIFFERENT TEMPERATURES

aCeTY ExoMol = theory

HITRAN = roomtemp laboratory data

Chubb et al. 2020 <u>arXiv:2001.04550</u>

WARNING: WAVELENGTH

Laboratory data: largely room-temp

EXOMO

Theoretical data: typically valid up to high temps (check each species)

EXOMOLOP: DOWNLOAD FROM WWW.EXOMOL.COM

www.exomol.com/data/data-types/opacity/

Search molecules: Search by formula

ExoMol: Molecules with Opacity: Temperature and pressure dependent opacities generated for different ratiative transfer codes in their native formats.

other oxides	metal hydrides	ions	other hydrides	
со	MgH	LiH ⁺	NH	
NO	NaH	H ₂ ⁺	СН	
PO	AlH	HeH ⁺	ОН	
O ₂	CrH	H ₃ +	SiH	
	CaH	OH ⁺	SH	
	BeH	H ₃ O ⁺	РН	
metal oxides	тін			
Vo	FeH			
AIO	LiH	other diatomics	larger molecules	

Data 👻 Software				
Search				
By Molecule				
By Data Type				
Bibliography				
ine exolviol format is de				

CoYuTe: opacity

Please cite all line lists!

Hot Temperature line list for (14N)(1H)3, 0-20000 cm-1.

14N-1H3_CoYuTe.R1000_0.3-50mu.ktable.NEMESIS.kta NEMESIS k-tables at R= 1000 (0.3-50mu) in NEMESIS-kta format: CoYuTe (14N)(1H)3 line list.

14N-1H3_CoYuTe.R15000_0.3-50mu.xsec.TauREx.h5 TauREx cross sections at R= 15000 (0.3-50mu) in HDF5 format: CoYuTe (14N)(1H)3 line list.

14N-1H3_CoYuTe.R1000_0.3-50mu.ktable.ARCiS.fits.gz ARCiS k-tables at R= 1000 (0.3-50mu) in fits format (gzipped): CoYuTe (14N)(1H)3 line list.

14N-1H3_CoYuTe.R1000_0.3-50mu.ktable.petitRADTRANS.h5 petitRADTRANS k-tables at R= 1000 (0.3-50mu) in HDF5 format: CoYuTe (14N)(1H)3 line list.

References

- 1. Coles, P. A., Yurchenko, S. N., Tennyson, J., "ExoMol molecular line lists XXXV. A rotation-vibration line list for hot ammonia", *Monthly Notices of the Royal Astronomical Society* **490**, 4638-4647 (2019). [link to article][19CoYuTe.NH3]
- Chubb, K.L., Rocchetto, M., Yurchenko, S.N., Min, M., Waldmann, I., Barstow, J.K., Molliere, P., Al-Refaie, A.F, Phillips, M.W., Tennyson, J., "The ExoMolOP Database: Cross-sections and k-tables for Molecules of Interest in High-Temperature Exoplanet Atmospheres", *Astronomy and Astrophysics* Accepted (2020).

Radius	1.036 (_{-0.019} ^{+0.019}) R _J
Mass*sin(i)	2.034 ($_{\rm -0.052}$ $^{\rm +0.052}$) M _J
Semi-Major Axis	0.01526 (± 0.00018) AU
Orbital Period	0.81347753 (± 7e-07) day

arXiv:2004.13679 Chubb et al., 2020

arXiv:2004.13679 Chubb et al., 2020

TauREx 3.0

ARCis

H2O only

arXiv:2004.13679 Chubb et al., 2020

ARCis

TauREx 3.0

EVIDENCE FOR CrH IN WASP31b

Molecule	Wavelength range
AlH	0.37–100µm
AlO	0.29–100µm
C_2H_2	1.00–100µm
C_2H_4	1.41–100µm
CaH	0.45–100µm
CH_4	0.83–100µm
CN	0.23–100µm
CO	0.45–100µm
CO_2	1.04–100µm
CP	0.67–100µm
CrH	0.67–100µm
FeH	0.67–100µm
H_2CO	0.99–100µm
H_2O	0.24–100µm
HCN	0.56–100µm
K	0.29–100µm
MgH	0.34–100µm
MgO	0.27–100µm
Na	0.24–100µm
NH ₃	0.43–100µm
OH	0.23–100µm
ScH	0.63–100µm
TiH	0.42–100µm
TiO	0.33–100µm
VO	0.29–100µm

arXiv:2011.10558

High resolution spectroscopy

VLT. Image credit: ESO

Requires very accurate spectral data

HIGHER ACCURACY

EXOMO

THEORY (high temp)

EXPERIMENT (room-temp)

(Measured Active Rotational-Vibrational Energy Levels)

$H-C \equiv C-H$

37,813 experimental transitions

61 publications

11,213 energy levels

Original Research By Young Twinkle Students

TWINKLE A MISSION TO UNRAVEL THE STORY OF PLANETS IN OUR GALAXY

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

MARVEL analysis of the measured high-resolution rovibrational spectra of C_2H_2

ournal of uantitative pectroscopy &

adiative ransfer

Katy L. Chubb^{a,*}, Megan Joseph^b, Jack Franklin^b, Naail Choudhury^b, Tibor Furtenbacher^c, Attila G. Császár^c, Glenda Gaspard^b, Patari Oguoko^b, Adam Kelly^b, Sergei N. Yurchenko^a, Jonathan Tennyson^{a,*}, Clara Sousa-Silva^{d,a,b}

^a Department of Physics and Astronomy, University College London, London WC1E 6BT, UK ^b Highams Park School, Handsworth Avenue, Highams Park, London E4 9PJ, UK

^c Institute of Chemistry, Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, H-1518 Budapest 112, Hungary ^d Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA

Article

Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere

https://doi.org/10.1038/s41586-021-03381-x

- Received: 22 July 2020
- Accepted: 22 February 2021
- Published online: 7 April 2021
- Check for updates

Paolo Giacobbe¹, Matteo Brogi^{1,2,3}, Siddharth Gandhi^{2,3}, Patricio E. Cubillos⁴, Aldo S. Bonomo¹, Alessandro Sozzetti¹, Luca Fossati⁴, Gloria Guilluy^{1,5}, Ilaria Carleo⁶, Monica Rainer⁷, Avet Harutyunyan⁸, Francesco Borsa⁹, Lorenzo Pino^{7,10}, Valerio Nascimbeni¹¹, Serena Benatti¹², Katia Biazzo¹³, Andrea Bignamini¹⁴, Katy L. Chubb¹⁵, Riccardo Claudi¹⁶, Rosario Cosentino⁸, Elvira Covino¹⁷, Mario Damasso¹, Silvano Desidera¹⁶, Aldo F. M. Fiorenzano⁸, Adriano Ghedina⁸, Antonino F. Lanza¹⁸, Giuseppe Leto¹⁸, Antonio Maggio¹², Luca Malavolta¹¹, Jesus Maldonado¹², Giuseppina Micela¹², Emilio Molinari¹⁹, Isabella Pagano¹⁸, Marco Pedani⁸, Giampaolo Piotto¹¹, Ennio Poretti⁸, Gaetano Scandariato¹⁸, Sergei N. Yurchenko²⁰, Daniela Fantinel¹⁶, Alberto Galli⁷, Marcello Lodi¹², Nicoletta Sanna⁷ & Andrea Tozzi⁷

150

100

50

ExoMolOP: low-res only High-res: only some line lists suitable (some xsecs available from e.g. Gandhi et al. 2020)

Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters

Siddharth Gandhi ➡, Matteo Brogi, Sergei N Yurchenko, Jonathan Tennyson, Phillip A Coles, Rebecca K Webb, Jayne L Birkby, Gloria Guilluy, George A Hawker, Nikku Madhusudhan ... Show more

Monthly Notices of the Royal Astronomical Society, Volume 495, Issue 1, June 2020, Pages 224–237, https://doi.org/10.1093/mnras/staa981

Published: 23 April 2020 Article history v

SUMMARY

- How do we know what these molecular spectra look like?
- Combination of laboratory experiments and theoretical quantum methods
- What are some of the challenges associated with finding out?

Both lab and theory is challenging at high temps. Computing a line list for one species can take years, particularly for molecules with more atoms/electrons

• How do we use these in our exoplanet retrieval models

Low-res: Databases such as ExoMolOP (codes: petitRADTRANS, ARCiS, TauREX, NEMESIS) High-res: only some line lists suitable (some xsecs available from e.g. Gandhi et al. 2020)

• Differences between low and high resolution data

Completeness most important for low-res but accuracy most important for high-res (Please check a line list is suitable for high-res before using it!)

3 MAIN RETRIEVAL INGREDIENTS

ARCis

TauREx 3.0

(o) Detection significance (o 3.0 4.0 5.0 6.1

-50 0 50 V_{rest} (km s⁻¹)

petit

VLT. Image credit: ESO

THANK YOU FOR LISTENING

<u>katy@sron.nl</u> / workshop slack (Katy Chubb) www.exomol.com/data/data-types/opacity/

arXiv:2009.00687

The ExoMolOP Database: Cross-sections and k-tables for Molecules of Interest in High-Temperature Exoplanet Atmospheres

Katy L. Chubb^{1,2*}, Marco Rocchetto², Sergei N. Yurchenko², Michiel Min¹, Ingo Waldmann², Joanna K. Barstow², Paul Mollière³, Ahmed F. Al-Refaie², Mark W. Phillips⁴, and Jonathan Tennyson²