

European Research Council

The upper atmospheres of the ice giants

Henrik Melin

25 Aug 2021, ESO Atmo 21

NASA IRTF iSHELL, 2019

henrik.melin@leicester.ac.uk / @hmelin_

The Ice Giants

- Far away from the Sun, cold temperatures
 Uranus ~19 AU
 Neptune ~30 AU
 - Dominated by hydrogen and helium
- Both Neptune and Uranus about 4 times the size of the Earth
- Highly offset magnetic fields, with quadruple and octopod components (i.e. not just a dipole)
- This size and type of planet is common throughout the universe

[492] XXXII. Account of a Comet. By Mr. Herschel, F.R.S.; communicated by Dr. Watson, Jun. of Bath, F.R.S. Read April 26, 1781. O N Tuesday the 13th of March, between ten and eleven in the evening, while I was examining the small stars in the neighbourhood of H Geminorum, I perceived one that appeared visibly larger than the reft : being ftruck with its uncom-

mon magnitude, I compared it to H Geminorum and the fmall

Discovery of Uranus

- First planet to be discovered since the antiquities
- Worked with his sister Caroline to make a number of discoveries
- Chance observation by William Hershel in 1781, which made him a superstar
- Build the 40-foot telescope in Slough, paid for by King George III

1821 - Alexis Bouvard

1846 - Johann Gottfried Galle

Discovery of Neptune

- Alexis Bouvard used Newton's Laws of Motion to predict the positions of Jupiter, Saturn and Uranus - those of Uranus were wildly off
- Adams & Le Verrier both made predictions of where to find the "New Planet"
- Neptune first observed on 24 Sept 1846 by Johann Gottfried Galle at the Berlin Observatory
- "The planet whose place you have [computed] really exists" (Galle to Le Verrier)

Upper atmosphere - definition

- Situated above the homopause above which molecular diffusion dominates over eddy diffusion (turbulent mixing)
- Each species is distributed according to its own scale height, dependent on mass. Dominated by light species.
- Low density
- Two basic components: neutral thermosphere and charged particle ionosphere
- The molecular ion H₃+ is a dominant ion in the ionosphere and is observable using near-infrared telescopes

Why do we care?

The ionosphere feels the magnetic field and the processes within it

The upper atmosphere connects the planet to the surrounding space environment

Voyager 2 Uranus - 1986 Neptune - 1989

Atmospheric structure

Derived from ultraviolet solar occultations of the upper atmosphere using the Voyager 2 Ultraviolet Spectrometer (UVS)

Broadfoot et al. (1989)

Broadfoot et al. (1986)

The predicted temperature based on solar input alone is several hundreds of Kelvins less than is observed!

335

	Jupiter	Saturn	Uranus	Neptune
Heliocentric distance (AU)	5.20	9.57	19.19	30.07
Absorbed solar flux (W m ^{-2})	3.7×10^{-5}	1.1×10^{-5}	2.7×10^{-6}	1.1×10^{-6}
T _{exo} (observed) [K]	940	420	800	600
$T_{\rm exo}$ (calculated) [K]	203	177	138	132
$\Delta T_{\rm exo}$ (obs-calc) [K]	737	243	662	468
	Observe predi	d temperatu cted temper	Yelle & I re minus rature	Miller (2004)

Comparison of predicted and measured exospheric temperatures.

Change in Temperature (K)

Yates et al. (2014)

1. Auroral heating

- The auroral process can inject TW of energy about the magnetic poles
- The giant planets are fast rotators, creating immense Coriolis forces
- How can heat be transported?
- O'Donoghue et al., (2021) suggests it's possible

O'Donoghue et al., (Nature, 2016)

2. Wave heating

- Turbulent lower atmosphere generates gravity waves that release their energy in the upper atmosphere
- Models unclear on how efficient this process is
- O'Donoghue et al., (2016) observed heating above the Great Red Spot of Jupiter
- Understanding of low-latitude ionosphere remains vague especially at Uranus and Neptune

Ice giant auroral emissions

15.0

Uranus

Auroral H₂ emission mapped to equinoctial geometry

Voyager 2 - Herbert (2009)

Hubble Space Telescope Lamy et al. (2012, 2017, 2018)

Neptune

Brightness of H₂ emission observed in the far-ultraviolet Broadfoot et al. (1989)

The molecular ion H₃+

$$\mathrm{H}_{2}^{+} + \mathrm{H}_{2} \longrightarrow \mathrm{H}_{3}^{+} + \mathrm{H}$$

Modelling H₃+ emissions

- h3ppy Python 3 package to model and fit observed H₃+ spectra
- Install: pip install h3ppy
- https://github.com/henrikmelin/h3ppy

H₃+ as seen from the Earth

Apparent relative sizes

Johnson et al. (2018)

Detection of H₃+ at Uranus

Trafton et al. (1993) discovered H₃+ at Uranus Disk averaged temperature of 740 K

Similar to the 750 K derived by Voyager 2

Intermittent observations between 1992 and 2009: e.g. Lam et al. (1997), Trafton et al. (1999), Encrenaz et al. (2003)

First long-term study

Re-analysed all available near-infrared observations of H₃+ from Uranus, retrieving temperature

Globally averaged temperature of the upper atmosphere as a function of time

 Table 3

 The Energy Injected into the Upper Atmosphere by Solar Ultraviolet Radiation

 Compared to the Radiative Cooling Provided by H⁺₃

Run Number	Year	Solar Input (GW)	H ₃ ⁺ Cooling (GW)	Ratio
1	1992.3	25.9	222.8	0.12
2	1993.3	19.8	207.1	0.10
3	1994.5	16.0	332.4	0.05
4	1995.5	15.2	160.0	0.10
5	1999.7	26.1	447.7	0.06
6	2000.7	27.5	350.2	0.08
7	2001.5	27.6	207.6	0.13
8	2001.7	29.4	222.2	0.13
9	2002.6	26.9	200.0	0.13
10	2006.7	15.6	152.9	0.10
11	2008.8	14.2	138.4	0.10
Average		22.2	240.1	0.10

New observations of H₃+ form Uranus

New observations

New observations

Long-term variability

One of a kind long-term dataset

Continuous cooling for 27 years - longer than length of season!

Cooling means less intense H₃+, 2018 intensity is ~5% of 1992 intensity

H₃+ at Neptune

What do we expect to observe?

Given a H₃⁺ peak density of 100 ions per cubic centimetre and If the temperature structure is the same as in 1989 then H₃⁺ will be easily detectable from Neptune with existing ground-based telescopes

H₃+ at Neptune

Keck NIRSPEC - Melin et al. (2011)

Models underestimate density

OR

The upper atmosphere of Neptune has cooled since Voyager 2 (like Uranus!?)

See Moore et al. (2020)

Pressing questions

- The Energy Crisis remains what drives this heating? Is it unique to the giant planets in our solar system?
- Why are the upper atmospheres of Uranus and Neptune so very different? The upper atmosphere of the giant planets are all very different.
- What is the nature of the interaction between the ionospheres of the ice giants and their magnetospheres? How important is auroral Joule heating? Heating by breaking of gravity waves?
- What drives long-term changes in the temperature of the upper atmosphere of Uranus?
- We need to detect H₃⁺ at Neptune!

James Webb Space Telescope

- Launch in Nov 2021?
- High sensitivity and spatial resolution, medium spectral resolution
- NIRSPEC instrument offers 3" x 3" FOV perfect for Uranus - global mapping of H₃+
- Uranus NIRSPEC and MIRI observations are in the Guaranteed Time Observing (GTO) programme

30 m (100 ft) Telescopes

Thirty Metre Telescope

Extremely Large Telescope

Conclusions

- The ionosphere is the interface between the atmosphere and the magnetosphere, enabling energy transfer between the two systems
- The upper atmosphere of Uranus has been cooling for 27 years, longer than the nominal season of 21 years. One of kind dataset, detailing behaviour unique to Uranus.
- H₃+ remains undetected at Neptune :-(
- To truly understand ice giants we need a dedicated mission of exploration!