Jean-Michel Désert (PI, UvA), Kamen Todorov, Jacob Bean, Catherine Huitson, Jonathan Fortney, Kevin Stevenson, Marcel Bergmann

Vatsal Panwar University of Amsterdam

ESO Atmo 2021


```
Probing Transiting Exoplanet Atmospheres
from ground, in low-resolution
```


Probing Transiting Exoplanet Atmospheres from ground, in low-resolution

Strategy of Normalising Target by Comparison star is problematic:

Strategy of Normalising Target by Comparison star is problematic:

1. Comparison stars could be variable

Strategy of Normalising Target by Comparison star is problematic:

- 1. Comparison stars could be variable
- 2. The operation of normalising can add systematics!

Strategy of Normalising Target by Comparison star is problematic:

- 1. Comparison stars could be variable
- 2. The operation of normalising can add systematics!
- 3. Difficult to follow-up bright targets with no nearby suitable comparison stars

Strategy of Normalising Target by Comparison star is problematic:

- 1. Comparison stars could be variable
- 2. The operation of normalising can add systematics!
- 3. Difficult to follow-up bright targets with no nearby suitable comparison stars

Need for a new method!

New method to correct for systematics in ground based light curves

New method to correct for systematics in ground based light curves

Also see Gibson et al. 2011

New method to correct for systematics in ground based light curves

Also see Gibson et al. 2011

New method improves accuracy and precision of transit parameters

New method: Target LC

Conventional method : Target/Comparison LC

Gemini/GMOS view of the warm Neptune HAT-P-26b

Gemini/GMOS view of the warm Neptune HAT-P-26b

Target LC

Panwar et al. (in review)

Panwar et al. (in review)

Target LC

Target/Comparison LC

Residuals

Target/Comparison LC

Propagating uncertainties from common mode correction within Bayesian framework of GPs

Panwar et al. (in review)

Gemini/GMOS transmission spectrum of the warm Neptune HAT-P-26b

Gemini/GMOS transmission spectrum of the warm Neptune HAT-P-26b

Gemini/GMOS transmission spectrum of the warm Neptune HAT-P-26b

Gemini/GMOS transmission spectrum of the warm Neptune HAT-P-26b **Constraining the cloud deck pressure level**

Wavelength[µm]

Measuring Accurate transit depth necessary for active host stars

WASP-19b observed by TESS

Time - 2458500 [BJD TDB]

Measuring Accurate transit depth necessary for active host stars

WASP-19b observed by TESS

How does this change planet's spectrum?

Time - 2458500 [BJD TDB]

Contamination of transmission spectrum due to stellar spots/faculae

WASP-19b observed by Gemini/GMOS over multiple epochs 24000 WASP-19b T_{eq} ~ 2200 K 23000 **TiO ? (Sedaghati et al. 2017,2020;** Espinoza et al. 2019) [mdd] 22000 Depth | HST/WFC3 21000 Huitson et al. 2013 Transit 20000 19000

18000

0.500

0.550 0.575

0.525

Wavelength [µm]

WASP-19b observed by Gemini/GMOS over multiple epochs

WASP-19b observed by Gemini/GMOS over multiple epochs

WASP-19b observed by Gemini/GMOS over multiple epochs

Wavelength [µm]

Panwar et al. in prep

Stellar variability: an obstacle to combining multi-epoch spectra

1	

Stellar variability: an obstacle to combining multi-epoch spectra

1	

Stellar variability: an obstacle to combining multi-epoch spectra

1	
	1

Summary and Conclusions

spectra that does not rely on comparison stars.

- bright targets with no suitable comparison stars nearby.
- Contamination due to stellar variability raises concerns on reliably combining transmission spectra over multiple epochs.

• We develop a new method to extract ground-based transmission

 The new method is more accurate and more precise; it allows to derive wavelength dependent absolute transit depths.

The new method enables ground-based atmospheric follow-up of