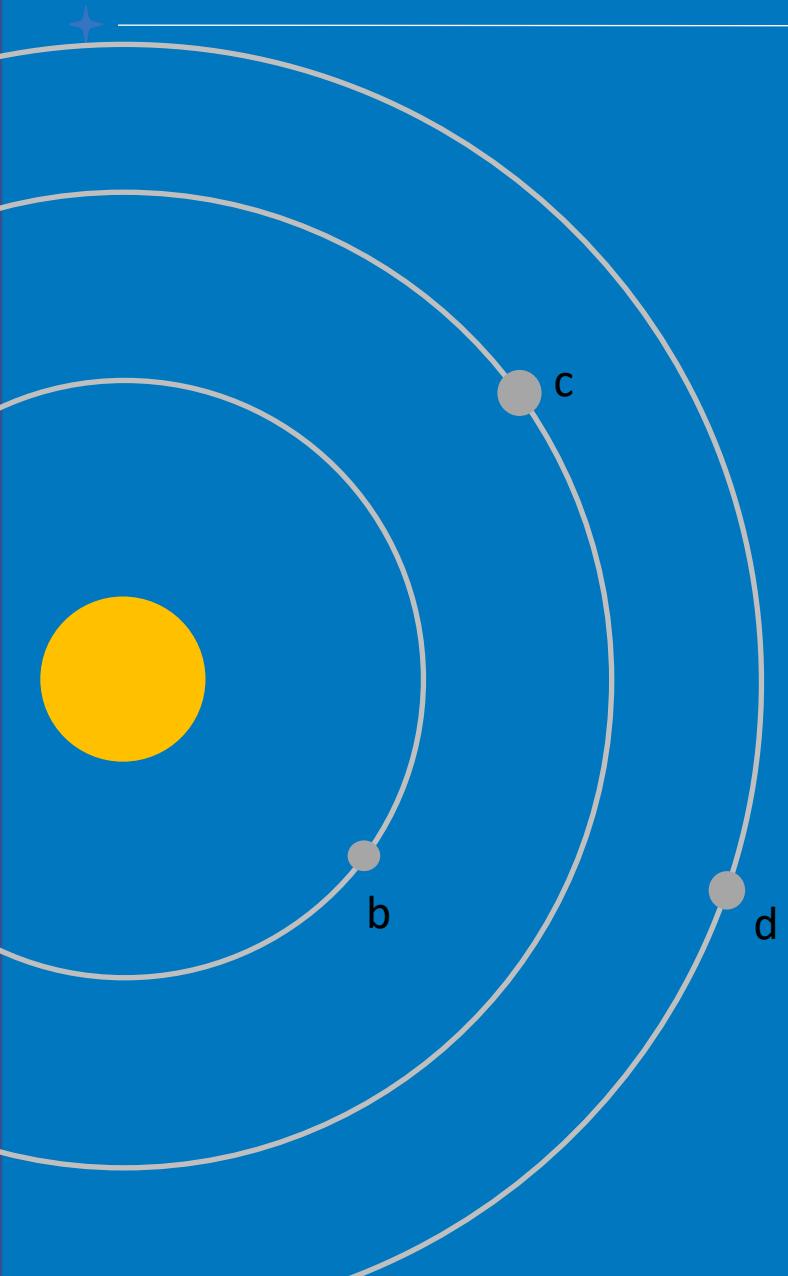
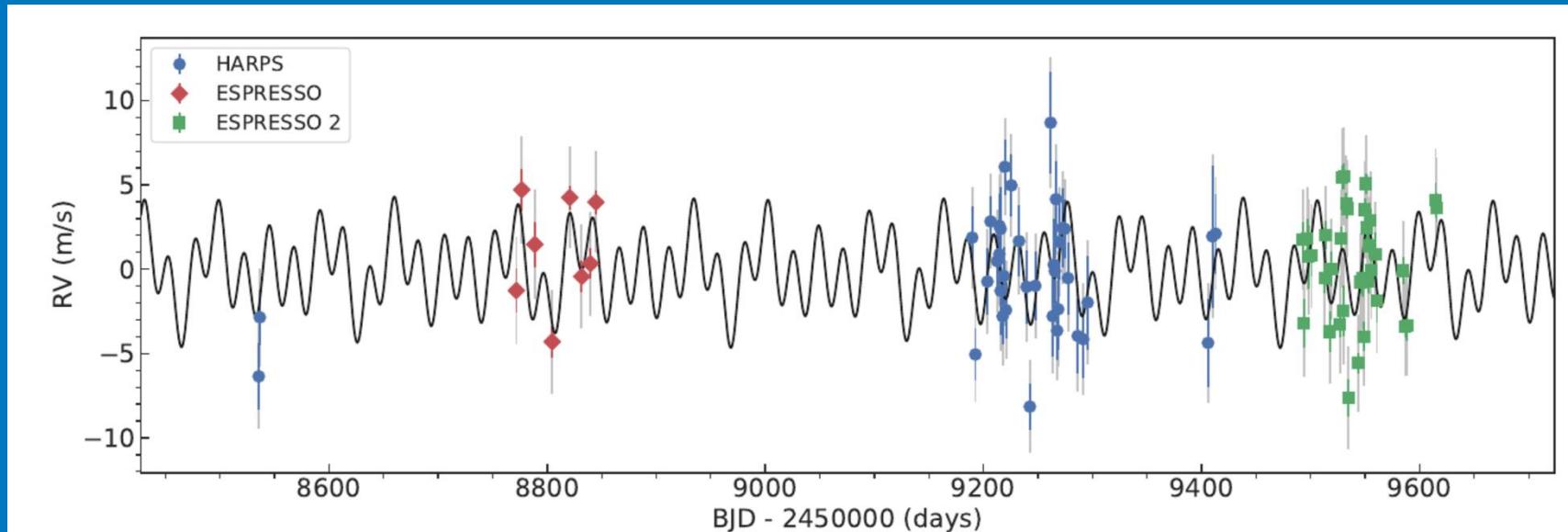


Observation Preparation: ETC, P2, OBs


La Silla Observing School 2026

Florian Rodler
Staff Astronomer @ ESO



Florian Rodler

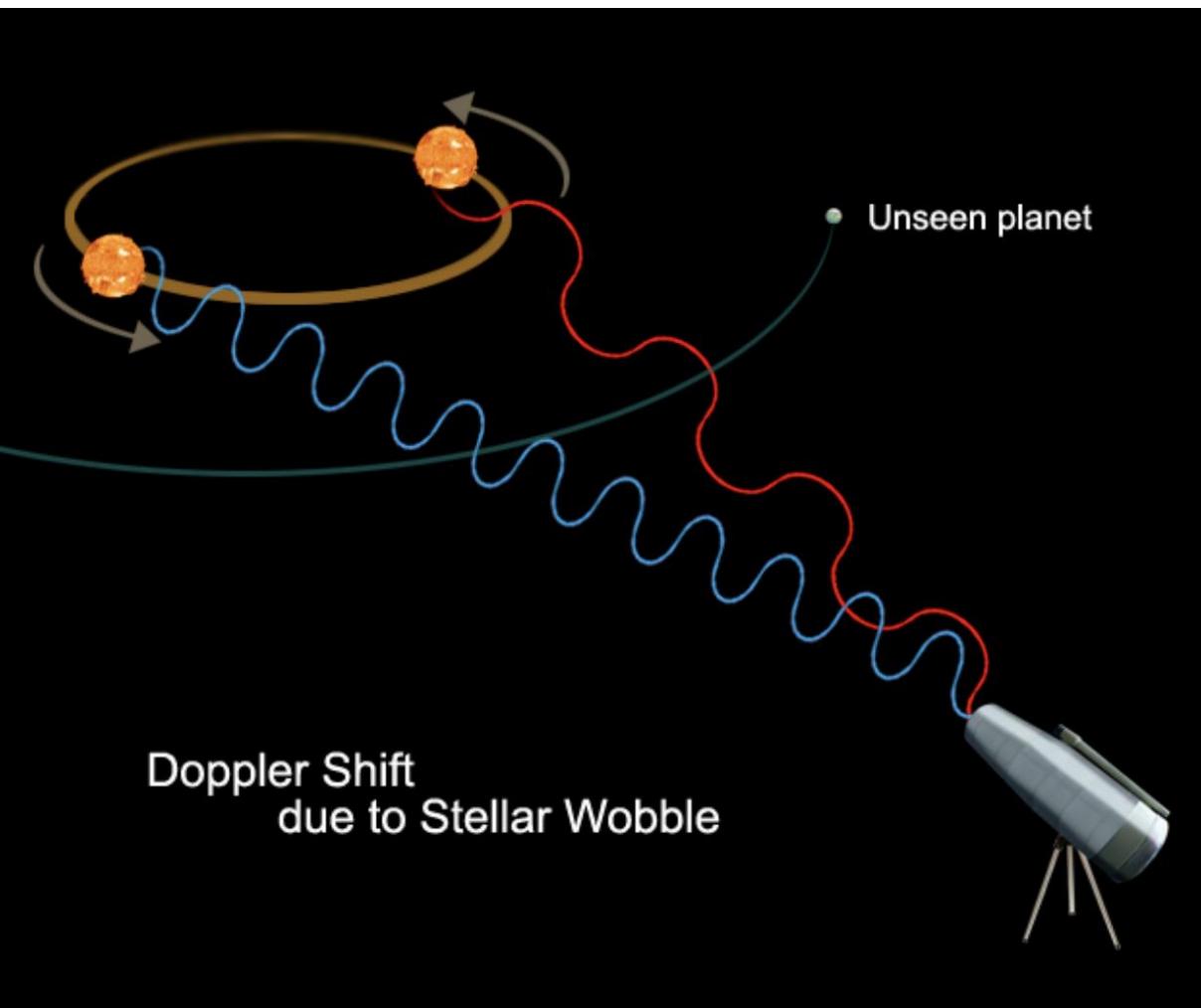
A dance of three (sub)-Neptunes

Planet	Orbital Period (days)	Radius (Earth)	Mass (Earth)	Density
TOI-282 b	22.891 (0.0004)	2.2 (0.1)	6.2 (1.6)	like Neptune
TOI-282 c	56.008 (0.002)	4.2 (0.11)	9.2 (2.0)	like Saturn
TOI-282 d	84.26 (0.007)	3.3 (0.11)	5.8 (1.0)	like Saturn

Planning the experiment (= the observations)

So, you have an idea ...

**What measurements are needed
to achieve the science goal?**


Is the idea feasible?

Observation preparation starts when applying for telescope time

- What instruments can provide the measurements?
- When is the target observable?
- How much observing time is needed?
- What observing conditions are needed?

What telescope & instrument can provide the measurement?

- Radial velocity measurements?

→ What RV precision is needed?

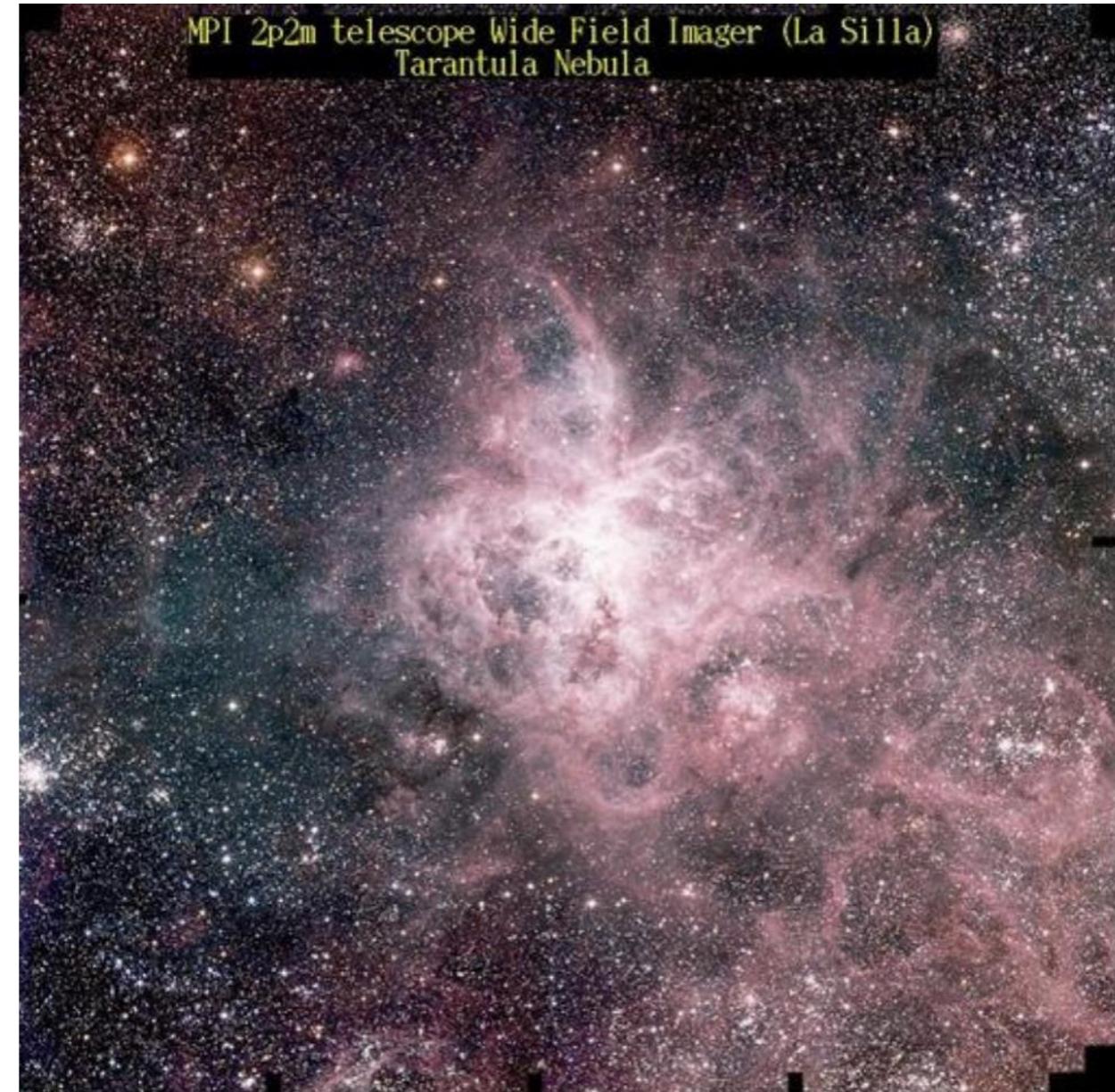
→ High-resolution spectrograph

→ Wavelength range?

Where is the object bright and exhibits a large number of spectral features?

What telescope & instrument can provide the measurement?

- Imaging?


→ What angular resolution on sky do you need?

Wide field vs narrow field?

Atmospheric turbulence correction (adaptive optics / AO)?

→ Wavelength range?

UV, optical, infrared?

What telescope & instrument can provide the measurement?

→ **Instrument website for La Silla**

<https://www.eso.org/sci/facilities/la-silla/instruments.html>

→ **Read the User Manual of the instrument to be used**

Observation preparation starts when applying for telescope time

- What instruments can provide the measurements?
- When is the target observable?
- How much observing time is needed?
- What observing conditions are needed?

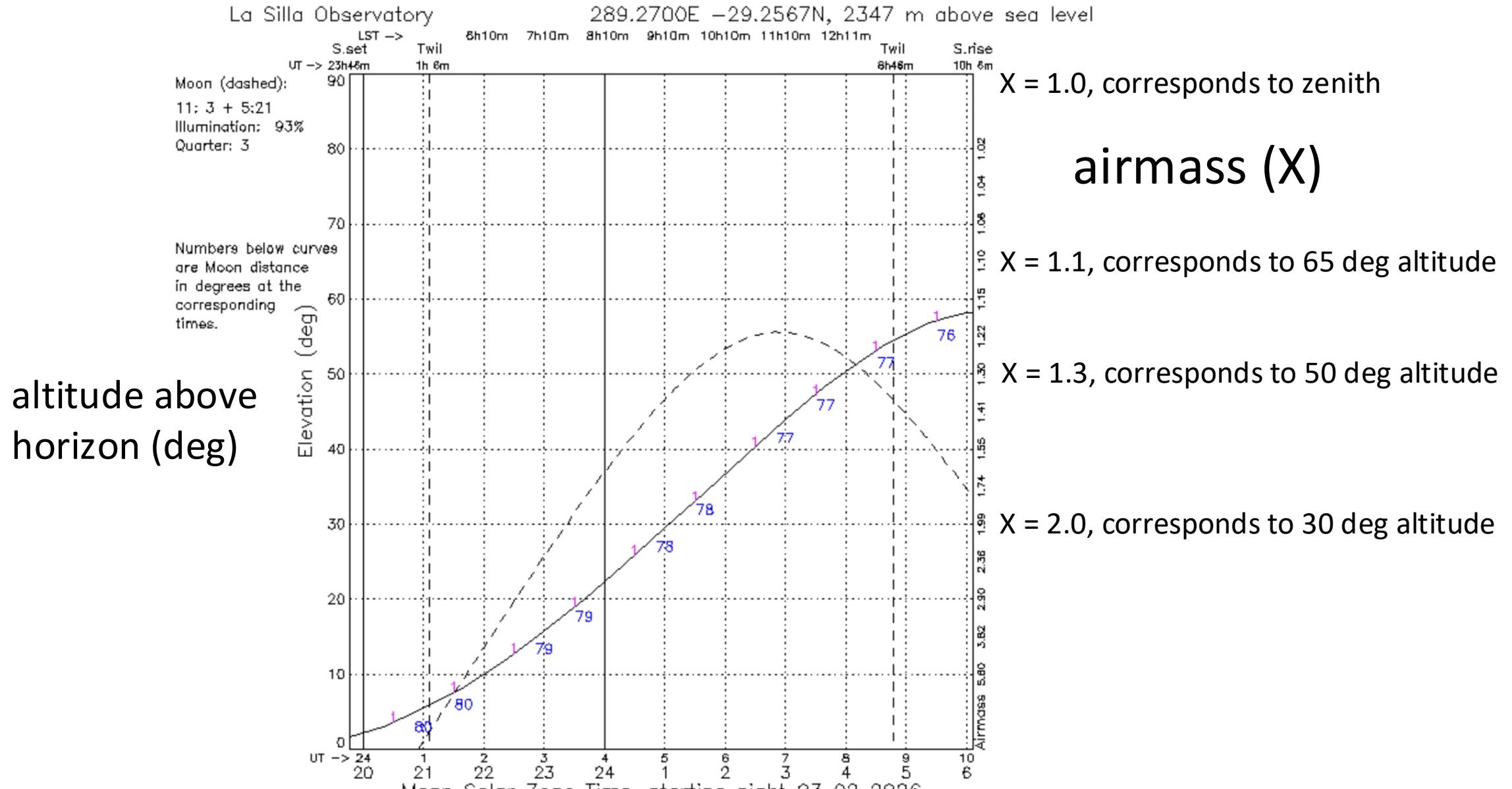
When is the target observable?

Staralt: <https://astro.ing.iac.es/staralt/>

Skycalc:

<https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC>

Simbad provides target information, incl. coordinates:


<https://simbad.cds.unistra.fr/simbad/>

When is the target observable?

Mode	Staralt <input type="button" value="▼"/>
Night	03 <input type="button" value="▼"/> February <input type="button" value="▼"/> 2026 <input type="button" value="▼"/> or date when the local night starts. Staralt, Startrack only.
Observatory	La Silla Observatory (Chile) <input type="button" value="▼"/> Select one above or specify your own site with this format: Longitude(°E) Latitude(°N) Altitude(metres) UT-offset(hours) Ex.: 289.2767 -30.2283 2725 -4 <input type="text"/>
Coordinates	Formats can be any of these: name hh mm ss ±dd mm ss name hh:mm:ss ±dd:mm:ss name ddd.ddd dd.ddd name must be a single word with no dots, avoid using single numbers. Every entry must be in the same format, do not use different formats with different entries. We recommend a maximum of 100 targets per submission. <input type="text" value="14 39 36.49400 -60 50 02.3737"/>

When is the target observable?

When is the target observable?

Tips and tricks:

- Try to observe targets when they culminate (= around the lowest possible airmass)
→ less impact from our atmosphere, more flux, ...
- When observing many targets, plan ahead so that the telescope is never idle
- Avoid observations at high airmass (e.g. $X > 2$) as the impact from the atmosphere will be strong (lots of turbulence, less flux)
- Check the telescope limits (some telescopes do not allow observations at the zenith)

Observation preparation starts when applying for telescope time

- What instruments can provide the measurements?
- When is the target observable?
- How much observing time is needed?
- What observing conditions are needed?

How much observing time is needed?

→ Exposure Time Calculators

<https://www.eso.org/observing/etc/>

- ETCs allow to simulate observations for atmospheric & sky conditions
- They allow to find the optimum setup for the observations
- Telescope time is precious!

Facility	Imaging		Spectroscopy		
	EFOSC2	SUSI	EFOSC2	HARPS	NIRPS
La Silla	WFI				
Paranal UT1	FORS2 (old ETC)		FORS2 (old ETC)		KMOS
	FORS2 (new ETC)				
Paranal UT2	VISIR		UVES (new ETC)		UVES (old ETC)
			UVES-FLAMES		
			GIRAFFE		VISIR
Paranal UT3	SPHERE-IRDIS	SPHERE-ZIMPOL	X-SHOOTER		SPHERE-IFS
			CRIRES		
Paranal UT4	HAWK-I		MUSE		
			ERIS		
Paranal ICCF				ESPRESSO	
Paranal VLTI	GRAVITY	MATISSE	VisCalc	CalVin	

Exposure Time Calculators: EFOSC (1)

Target Input Flux Distribution

<input checked="" type="radio"/> Template Spectrum	G2V (Kurucz)	<input type="text"/> spectral type*
<input type="radio"/> MARCS Stellar Model	Teff=4000 log(g)=-0.5 [Fe/H]= 0 M= 1	Redshift z = <input type="text" value="0.00"/>
<input type="radio"/> Upload Spectrum	Select...	Target Magnitude and Mag.System:
<input type="radio"/> Blackbody	Temperature: <input type="text"/> K	<input type="radio"/> Vega
<input type="radio"/> Power Law	Index: <input type="text"/> $F(\lambda) \propto \lambda^{\text{index}}$	<input type="radio"/> AB
<input type="radio"/> Emission Line	Lambda: <input type="text"/> nm	<i>Magnitudes are given per arcsec² for extended sources</i>
	Flux: <input type="text"/> 10^{-16} ergs/s/cm ² (<i>per arcsec² for extended sources</i>)	wavelength band*
	FWHM: <input type="text"/> nm	

Spatial Distribution: Point Source Extended Source

*Target information: <https://simbad.cds.unistra.fr/simbad/>

Exposure Time Calculators: EFOSC (2)

Sky Conditions

0 = new moon, 0.5 = half moon, 1 = full moon

Moon FLI: Airmass:

Almanac

Low precipitable water vapor (PWV) is required for infrared observations >2000 nm

Probability $> 95\%$ of realising the PWV ≤ 30.0 mm

Seeing/Image Quality:

Turbulence Category: (FWHM of the atmospheric PSF outside the telescope at zenith at 500 nm)

IQ: arcsec FWHM at the airmass and reference wavelength

Seeing refers to the blurring due to atmospheric turbulence (measured at zenith)

Exposure Time Calculators: EFOSC (3)

Instrumental Setup

Slit width:

1.0" ▾

Grism:

Grism 2 ▾

Detector: CCD#40

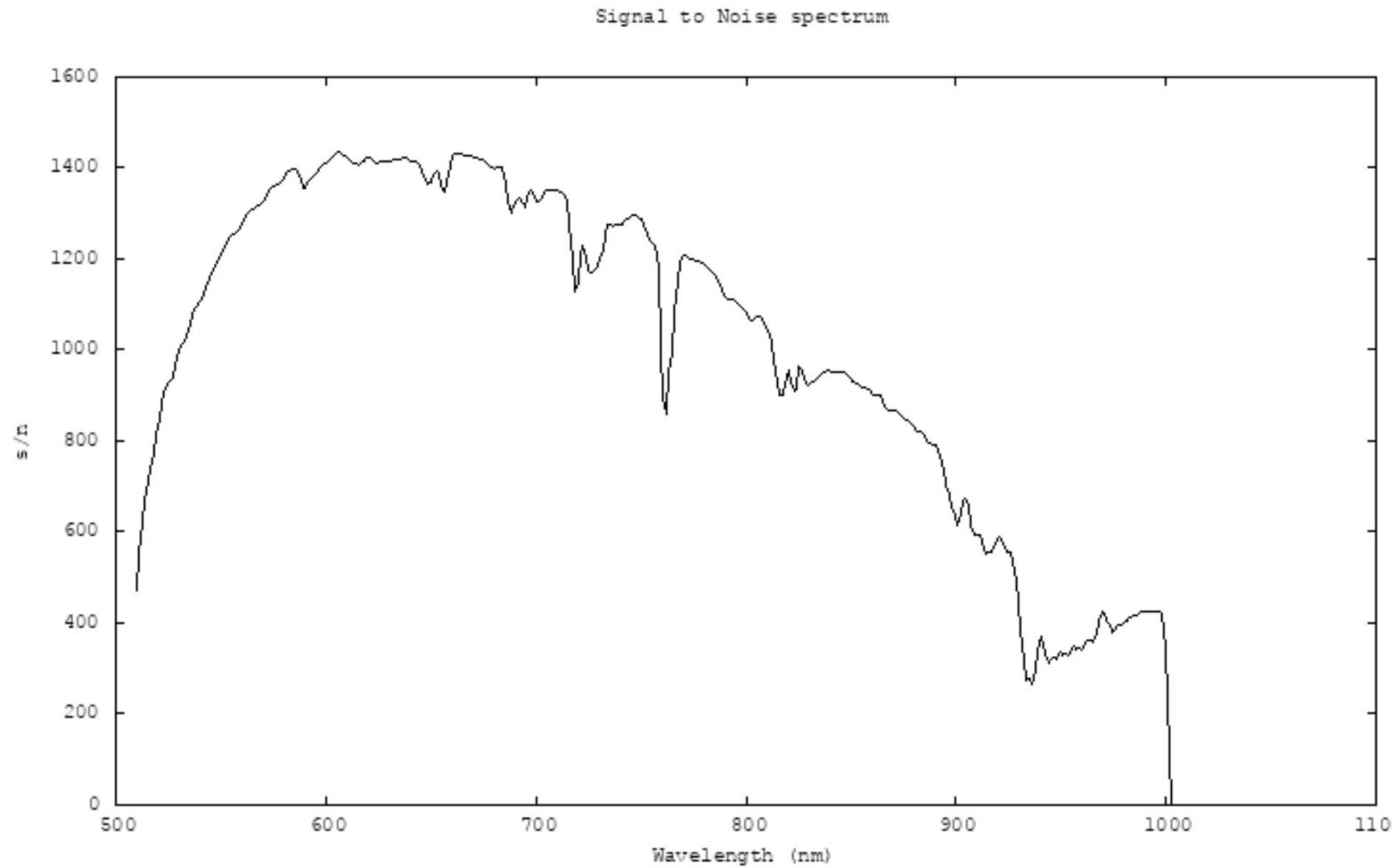
Readout mode: normal ▾ Binning: 2x2 ▾ (spectral)×(spatial)

Polarimetry Mode:

No polarimetry Linear polarisation

The instrument's **User Manual** contains all relevant information (e.g., wavelength range & spectral resolving power of grisms, detector readout times)

Results


S/N:

Exposure Time:

100.0 s

Exposure Time Calculators: EFOSC - output

Output shows the signal-to-noise ratio (S/N):

Signal-to-noise ratio (S/N)

low S/N

high S/N

Signal-to-noise ratio (S/N)

The **Signal (S)** is the number of photons from an object that are recorded by the detector and converted into electrons

Signal-to-noise ratio (S/N)

The **Signal (S)** is the number of photons from an object that are recorded by the detector and converted into electrons

The **Noise (N)** is the random contribution from various sources that affect the measurement of the signal, typically:

- **Photon noise** (shot noise) is the randomness in signal caused by the arrival of photons at the detector, due to the quantum nature of light. $N_{phot} = \sqrt{S}$

→ **If you want to double the S/N, you have to observe ~4 times longer ... (or go to a telescope ~twice as big in radius)**

Signal-to-noise ratio (S/N)

The **Signal (S)** is the number of photons from an object that are recorded by the detector and converted into electrons

The **Noise (N)** is the random contribution from various sources that affect the measurement of the signal, typically:

- **Photon noise** (shot noise) is the randomness in signal caused by the arrival of photons at the detector, due to the quantum nature of light. $N_{phot} = \sqrt{S}$
- **Background noise** due to sky brightness and thermal background of instrument, and detector (dark noise)
- **Read-out noise (RON)** when reading the detector

The ESO archive as an observation preparation guide

Within the ESO archive, you can locate observations similar to the ones you are planning, download them and analyse them ...

This can be very useful if you have never used the instrument before

ESO archive:

https://archive.eso.org/eso/eso_archive_main.html

A vibrant, colorful nebula with shades of red, blue, and purple, filled with numerous stars of varying sizes and brightness.

Congratulations, you have been awarded
telescope time!

Part II: Creating the observations

All ESO telescopes are operated through Observing Blocks (OBs)

Each OB is an observation unit, created by the users, that contains the ...

- target information and acquisition,
- observation description (instrument configuration, exposure time),
- finding charts (if needed),
- observing conditions and time-constraints (for service mode).

OBs are handled through ESO's Phase2 (p2) webpage ...

- for Paranal: <https://www.eso.org/p2>
- for La Silla: <https://www.eso.org/p2ls>

OBs are built using purpose-specific templates

- Each ESO instrument has its own set of templates
- Templates can be for target acquisition, for science observations, for calibration
- Example of a simple OB:

(1) Observing Blocks – creating an OB in p2

Phase 2 v2.22.25 [Details](#) [Overview](#) [Schedule](#) [Execution Sequence](#) [Help](#) UT: 22:10:53 · LST: 01:56:45 [La Silla Obs](#)

Your Observing Runs

Sort by: Nothing selected

- + **60.A-9501(A) · SOFI** (1)
- **60.A-9501(B) · EFOSC2** (6) 60.A-9501(B) · EFOSC2
+ 2020 (5)
+ 2024 (2)
+ 2025 (1)
- 2026 (1)
 OB 1000609601 · No Name
 OB CB Fld
+ AGNclub (17)
+ PlanetDefenders (18)

Check Certify Revise Edit Import/Export Delete Refresh OB Reveal in folder

60.A-9501(B) · EFOSC2 · OB 1000609601 No Name Exp. Time: 00:00:00 · Exec. Time: 00:00:00 (P)artially Defined

[Obs. Description](#) [Target](#) [Constraint Set](#) [Time Intervals](#) [Ephemeris](#) [Target Visibility](#) [Finding Charts](#)

Obs. Description: No name

tpl size: normal small tpl/row: 1

User Comments

Template Type: acquisition Template: EFOSC_img_acq_MOS Add Template

Clicking here creates an OB in the selected observing run and folder

CB: creates a Calibration Block (e.g. for a flat field)
Fld: Creates a folder

(2) Observing Blocks – specifying the acquisition and observing templates

Phase 2 v2.22.25 [Details](#) [Overview](#) [Schedule](#) [Execution Sequence](#) [Help](#) UT: 22:22:06 · LST: 02:08:00 La Silla Observing School

Your Observing Runs [Check](#) [Certify](#) [Revise](#) [Edit](#) [Import/Export](#) [Delete](#) [Refresh OB](#) [Reveal in folder](#)

60.A-9501(B) · EFOSC2 · OB 1000609601 Test-LS2026 Exp. Time: 00:00:00 · Exec. Time: 00:00:00 (P)artially Defined

Sort by: Nothing selected

+ 60.A-9501(A) · SOFI 1

- 60.A-9501(B) · EFOSC2 6

+ 2020 5

+ 2024 2

+ 2025 1

- 2026 1

OB 1000609601 · Test-LS2026

OB CB Fld

+ AGNclub 17

+ PlanetDefenders 18

Select OB

Obs. Description [Target](#) [Constraint Set](#) [Time Intervals](#) [Ephemeris](#) [Target Visibility](#) [Finding Charts](#)

Obs. Description: No name [tpl size: normal](#) [small](#) [tpl/row: 1 2 3 4 5](#)

Observing Description Name: No name

User Comments:

Template Type: **acquisition** [Template](#)

Template

- ✓ EFOSC_img_acq_MOS
- EFOSC_img_acq_MoveToPixel
- EFOSC_img_acq_MoveToSlit**
- EFOSC_img_acq_NarrowSlit
- EFOSC_img_acq_Polarimetry
- EFOSC_img_acq_Preset
- EFOSC_img_acq_PresetNoGuide
- EFOSC_img_acq_QWPolarimetry

[Add Template](#)

Select here the type of template:

- acquisition (= target centring)
- science (= observation)
- calibration

Nothing selected

- 9501(A) · SOFI 1
- 9501(B) · EFOSC2 6
- 20 5
- 24 2
- 25 1
- 26 1
- 1000609601 · Test-LS2026
- CB Fld
- Nclub 17
- netDefenders 18
- Fld
- 9501(C) · HARPS 7
- 9501(D) · NIRPS 1
- 9501(E) · FEROS 1
- 9501(F) · WFI 1

60.A-9501(B) · EFOSC2 · OB 1000609601 Test-LS2026 Exp. Time: 00:00:00 · Exec. Time: 00:00:00 (P)artially Defined
[Obs. Description](#)[Target](#)[Constraint Set](#)[Time Intervals](#)[Ephemeris](#)[Target Visibility](#)[Finding Charts](#)
▼ EFOSC_img.acq.MoveToSlit

#1 acquisition 1000401641

CCD readout speed

fast

Exposure time

20

CCD X binning

2

CCD Y binning

2

X pixel coordinate

1100

Rotator offset angle

0

Perform combined offset

T

Focus flag

F

Preset flag

T

Filter

R#642

Slit for Reference

Free

[Delete](#)
▼ EFOSC_spec.obs.Spectrum

#2 science 1000401640

CCD readout speed

normal

Exposure time

0

CCD windowing flag

F

First column of window

1

First row of window

1

Number of columns

2048

Number of rows

2048

CCD X binning

2

CCD Y binning

2

Number of Exposures

1

Filter

Free

Grism

- select -

!

Starplate

- select -

!

Observation type

- select -

!

[Duplicate](#)[Delete](#)

(3a) Observing Blocks – specifying the target details

Phase 2 v2.22.25 [Details](#) [Overview](#) [Schedule](#) [Execution Sequence](#) [Help](#) UT: 22:38:54 · LST: 02:24:50 [La Silla Observing School](#)

Your Observing Runs

Sort by: Nothing selected

+ **60.A-9501(A) · SOFI** (1)

- **60.A-9501(B) · EFOSC2** (6)

- + **2020** (5)
- + **2024** (2)
- + **2025** (1)
- **2026** (1)
 - OB** 1000609601 · Test-LS2026
 - OB** **CB** **Fld**
- + **AGNclub** (17)
- + **PlanetDefenders** (18)
 - OB** **CB** **Fld**

[Check](#) [Certify](#) [Revise](#) [Edit](#) [Import/Export](#) [Delete](#) [Refresh OB](#) [Reveal in folder](#)

60.A-9501(B) · EFOSC2 · OB 1000609601 Test-LS2026 [Exp. Time: 00:00:00 · Exec. Time: 00:00:00](#) [\(P\)artially Defined](#)

[Obs. Description](#) [Target](#) [Constraint Set](#) [Time Intervals](#) [Ephemeris](#) [Target Visibility](#) [Finding Charts](#)

Target Name
alf Cen A [resolve](#)

Right Ascension
14:39:36.493

Declination
-60:50:02.373

Equinox
J2000

Epoch
2000

Proper Motion Right Ascension
-3.6793

Proper Motion Declination
0.47367

Differential Right Ascension
0

Differential Declination
0

(3b) Observing Blocks – moving targets

Obs. Description

Target

Constraint Set

Time Intervals

Ephemeris

Target Visibility

Finding Charts

For targets with quickly changing coordinates, there is no need to fill in the coordinates in the 'Target' tab.

Instead, a PAF file must be attached in the 'Ephemeris' tab that contains the ephemeris of the moving target.

PAF files can be created via this webpage:

https://www.eso.org/sci/observing/phase2/Special/MovingTargets.html#par_javascript

(4) Observing Blocks – features for service mode observations

'Constraint Set' tab: specify here the worst possible observing conditions under which the OB can be executed (and still be scientifically useful)

'Finding Charts' tab: attach a finding chart so that the night crew observes the correct target

'Time Intervals' tab: specify here observing windows for time-critical OBs or observing sequences (e.g., observe my target every 3 days)

(5) Observing Blocks – finish: check and certify the OB

Phase 2 v2.22.25 [Details](#) [Overview](#) [Schedule](#) [Execution Sequence](#) [? Help](#) UT: 15:06:15 · LST: 18:54:54 [La Silla Observing School](#)

Your Observing Runs

Sort by: Nothing selected

+ **60.A-9501(A) · SOFI** (1)

- **60.A-9501(B) · EFOSC2** (6)

- + **2020** (5)
- + **2024** (2)
- + **2025** (1)
- **2026** (1)
 - OB** **1000609601 · Test-LS2026**
- OB** **CB** **Fld**

+ **AGNclub** (17)

+ **PlanetDefenders** (18)

OB **CB** **Fld**

Check **Certify** **Revise** **Edit** **Import/Export** **Delete** **Refresh OB** **Reveal in folder**

60.A-9501(B) · EFOSC2 · OB 1000609601 Test-LS2026 **Exp. Time: 00:01:40** **Exec. Time: 00:08:27** **(+) Accepted**

Obs. Description **Target** **Constraint Set** **Time Intervals** **Ephemeris** **Target Visibility** **Finding Charts**

Target Name
alf Cen A **resolve**

Right Ascension
14:39:36.493

Declination
-60:50:02.373

Equinox
J2000

Epoch
2000

Proper Motion Right Ascension
-3.6793

Proper Motion Declination
0.47367

Differential Right Ascension
0

Differential Declination
0

(6) Observing Blocks – Visitor Mode – Execution Sequence

Phase 2 v2.22.25 [Details](#) [Overview](#) [Schedule](#) [Execution Sequence](#) [? Help](#) UT: 16:53:59 · LST: 20:58:42 [La Silla Observing School](#)

Observing Night 1 Feb 2026 · night time: 01:09 - 08:47 Start UTC 07:30 [-1d](#) [now](#) [+1d](#)

Execution Sequence for [EFOSC2](#) [Refresh](#) [Delete](#) auto-refresh 1/min

Execution Sequence for EFOSC2

60.A-9501(B) · EFOSC2

- + 2020
- + 2024
- + 2025
- 2026
- OB 1000609601 · Test-LS2026 [Add →](#)
- + AGNclub

Execution Sequence

Target Visibility

Calibration OBs

Import/Export

#	Start	Exec.Ti...	OB ID	Target	RA	Dec	Obs	Run	PI
1	07:30	08m27s	+ 1000609601	alf Cen A	14:39:36.4...	-60:50:02.3...	✓	60.A-9501 (B)	La Silla Observing School

Important: Whenever you modify the execution sequence during the observations, inform the telescope operator about it so that they refresh it on their side.

Some final tips...

- **Plan your observations well (telescope time is valuable)**
- **Have your target list and the time when you will observe them**
- **Give yourself time to adapt to night schedule (sleep well)**
- **Think ahead about everything that is predictable (you will have to deal with unexpected things, and you will be tired)**
- **Have contingency plans for bad weather conditions, pointing restrictions – have a plan B (e.g. backup targets)**
- **Familiarise yourself with the tools you will be using**
- **Have your instrument setup and Observing Blocks ready**

Good luck with
your observations!