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Structure formation
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Gravitational instability and hierarchical build-up
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Gravitational instability and hierarchical build-up
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Bimodality
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Mass distribution of galaxies
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Dark matter
Stars and star clusters

Molecular, atomic and
ionised gas

Dust
Central SMBH
IGM

Gravitational collapse and
evolution

Gas hydrodynamics
Star formation
Stellar evolution
Feedback

Interaction with the environment

Star formation efficiency and the nature of feedback as a function

of halo mass

Fuelling and cessation of star formation

Roles of galaxy interactions and mergers versus in-situ processes
Relative prevalence of disks and spheroids

Mass-size relations of disks and spheroids

Downsizing

Co-evolution of central SMBH and their host galaxies



Complementary approaches

Observations

Statistical Level of detail _ .
investigations of —- DetallSciSstles
Iarge samples — of small samples
(surveys) Statistical power, completeness

Theory

Analytical, semi-analytical, numerical



A comprehensive survey of low-redshift (z < 0.5) galaxies to study galaxy
evolution and cosmology

GAMA = spectroscopic survey + alliance of imaging surveys

r<19.8 mag

Area = 286 deg?

N, = 270,000

Spectroscopy: 2 mag deeper than SDSS, multi-pass

Imaging: near-complete wavelength coverage, ~2x better resolution
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GAMA survey regions

5 survey regions:
* 3 equatorial
* 2 southern

Total area = 286 deg?
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GAMA spectroscopy

210 nights (4 FTEs!) of multi-object fibre spectroscopy using AAT/2dF+AAOmega

Area: 286 deg? split over 5 survey regions
Main sample: ~270k galaxies to r < 19.8 mag
R =1300,370<A <880 nm

<z>=0.27

SPECID=G09_Y4_201_045
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GAMA spectroscopy

* 210 nights (4 FTEs!) of multi-object fibre spectroscopy using AAT/2dF+AAOmega
* Area: 286 deg? split over 5 survey regions

* Main sample: ~270k galaxies to r < 19.8 mag
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How does GAMA fit in?
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Selection function management
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* Dependence of redshift success on fibre
position on the plate.

» Several possible causes, including:

« Systematic errors in astrometry, field
rotation, correction for atmospheric

refraction, ...

» Radial variation of apparent fibre
diameter, focal ratio degradation,

Redshift success (%)

non-telecentricity, ...
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GAMA is a multi-pass survey by design.

Tiling strategy is important! It affects the homogeneity of the incompleteness

as well as survey efficiency.

In GAMA: next tile placed where it most decreases local incompleteness.
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rr Selection function management
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Maintaining high
redshift completeness
in dense regions is
crucial for the
identification of
groups and mergers.

Completeness (%)
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Selection function management
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4 Selection function management
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From ~2000 duplicate observations:
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...and accuracy

From ~2000 duplicate observations:
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data reduction
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redshift measurement code
end of survey report, QC, DR2
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radio fluxes
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group catalogue
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BUT....

Dust correction

Issue is completely dominated
by how you define red.

A simple, hard colour cut is too
simple.

Not much evidence of a red
population below log M* ~ 9.

Taylor et al. (2015)
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r Is the red faint upturn real?
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GSMF by morphological type
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GSMF by morphological type
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r GSMF by morphological type
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Model constraints
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Does the GSMF depend on LSS?
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Does the GSMF depend on LSS?
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rr Does the GSMF depend on LSS? No.
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Radial Comoving Distance

Y - Projected Comoving Distance

X - Projected Comoving Distance

Max radial sep for FoF group
Max projected sep for FoF group

Implied FoF link
? = In Real Halo

7 = Not in Real Halo

X - Projected Comoving Distance

Actual Halo Group =1, 5,6
Radial FoF Group=1,2,5,6,7
Projected FoF Group =1, 3,4, 5,6

Final Common FoF Group=1, 5, 6

Robotham et al. (2011)

The GAMA group catalogue

FoF algorithm to identify
galaxy groups.

FoF parameters carefully
calibrated on mocks.

~24,000 groups in
equatorial survey regions.

2754 groups with N; ;>4
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GAMA + KiDS = weak lensing

Analysis of an initial joint GAMA+KiDS dataset covering 100 deg?

» The DM density profiles of group halos are well described by NFW
» Average halo masses > scaling relations

» Provides constraints on feedback models on group scales
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GAMA + KiDS =2 weak lensing
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r Galaxy-galaxy weak lensing
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r' Stallar-halo mass ratio in dense environments
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The masses of infalling sub-halos
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The masses of infalling sub-halos
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Panchromatic photometry
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Panchromatic photometry
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rn Panchromatic photometry
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B® The effect of galaxy interactions on the SFR
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r' The effect of galaxy interactions on the SFR

-
G -
M Close pairs

B Intermidiate pairs
- [ Far pairs

0.2
.

Normalized Log[sSFR]
0
I
|
1 SF enhanced
| >
1
v
|
l
0
1
|
|
I
1
|
|
' =
|
l
|
|
, g
1
]
]
5 o
]
]
1

I T T
SF decreased
S

-0.2

F FIR
L UV+TIR
- H-alpha

= MUY
- 0.1Gyr

= MIR

SFR indicatar

Davies et al. (2015)



R The effect of galaxy interactions on the SFR
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Star Formation Rate

R The effect of galaxy interactions on the SFR
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The stellar mass dependence of close pairs
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4 Stellar mass deppendence of major merger rate
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EV The role of mergers in building up stellar mass
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You, too, can use GAMA data

GAMA Data Release 2

The second GAMA data release (DR2) provides AAT/AADmega spectra, redshifts and a wealth of ancillary
information for 72,225 objects from the first phase of the GAMA survey (2008 - 2010, usually referred to as
GAMA 1). The DR2 web pages describe the data included in this release, and provide access to an SQL
database as well as to the actual data (spectra and catalogues).

If you are using GAMA DR2 data in a publication then please cite the DR2 paper (Liske et al. 2015) and
acknowledoe GAMA,

What is released?

The GAMA | survey extends over three eguatorial survey regions of 48 deg? each (called G09, G12 and G15)
and down to magnitude limits of r = 19.4 mag in G0% and G15, and r <= 19.8 mag in G12. In DR2 we are
releasing data for all GAMA | main survey objects with r <= 19.0 mag (G09 and G12) orr < 19.4 mag (G15). a—
Note that for G15 we are essentially releasing all GAMA | data. The total number of objects included in DR2 GAMA | | 8DSS DR | 54165 |
is 72,225. Of these, 70,726 objects (98%) have secure redshifts.

Details of the object selection for DR2:

« The qualifier '"GAMA ' refers to the fact that the objects for DR2 were selected from the input catalogue for the first phase of the GAMA survey
(= GAMA 1), see Baldry et al. (2010) for a detailed description of the GAMA | input catalogue.

« The qualifier 'main survey' refers to the fact that some targets were selected in different ways and for different reasons than those of the main
GAMA survey. These so-called 'filler' targets were only cbserved when a fibre could not be allocated to a main survey target. Filler targets are
not included in DR2.

= The rband magnitude is the Petrosian ~band magnitude from SDS5 DRE, corrected for Galactic extinction. This is the GAMA | selection
magnitude.

« The three GAMA | survey regions are each 12 x4 deg? in size, for a total survey area of 144 deg?:

r-band mag limits
Region RA range DEC range
DR2 GAMA | GAMA 1l
GAMA Schema Browser
G09 129.0 - 141.0 -1-+3 1%.0 19.4 19.8 . . .
The schema browser allows you to explore the contents of the DR2 SQL database. It shows you which tables/catalogues are available for queries and
what they contain. The GAMA data flow is organised around so-called Data Management Units (DMUS), and it is these DMUS that produce the tables in
G12 174.0 - 186.0 -2 - 42 19.0 19.8 19.8 this database. The schema browser provides access to all of the meta-information provided by each DMU, both on the DMU itself as well as on
individual tables/catalogues. If you find any of this information unclear, incomplete or incorrect then you may either directly get in touch with the
contact persen of that DMU or table, or else contact the database team
G15 2115 - 2235 -2 - +2 19.4 19.4 19.8 "
The table below provides an overview of the contents of the database. It lists all DMUs for which products are being released in DR2. Begin exploring
the database by clicking on the DMU names.
DMU name Version Description
InputCat V16 This DMU provides various input catalogues for the spectroscopy.
ExternalSpec Vo1 This DMU collects spectra for GAMA DR2 objects from previous spectroscopic
surveys such asthe SDSS.
SpecCat VOB This DMU provides the final spectra and redshift catalogues, including GAMA AST
and external data.
LocalFlowCorrection  vO7 This DMU performs local flow comrection, and provides redshifts in different
frames of reference.
ApMatchedPhotom  vD2 This DMU provides aperture matched ugrizYJHK photometry.
SersicPhotometry  vO7 This DMU provides a single-component Sersic fit in each of the ugrizYJHK bands
- for every GAMA DR2 galaxy.
. . GalexPhotometry vz This DMU provides GALEX NUV and FUV photometry for GAMA DR2 objects.
kCorrections vz This DMU provides k-corrections in the GALEX FUV and NUV bands, the SDSS
ugriz bands and the UKIDSS YJHK bands for all GAMA DR2 galaxies.
SpecLineSFR vo4 This DMU provides emission and absorption line measurements for all GAMA DR2

ART spectra, as well as derived physical properties, including the star-formation
rate, for all GAMA DR2 spectra and for all SDSS spectra of GAMA DR2 objects.

StellarMasses V08 This DMU provides stellar masses, restframe photometry, and other ancillary
stellar population parameters for all z < 0.65 galaxies in the GAMA DR2 sample.
EnvironmentMeasures v02 This DMU provides several different metrics of the local environment of GAMA

DR2 galaxies: a surface density, the number of galaxies within a cylinder, and
the density of galaxies within an adaptive Gaussian ellipsoid,

GroupFinding This DMU provides the GAMA Galaxy Group Catalogue (G3C).




r You, too, can use GAMA data

GAMA Panchromatic Data Release
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