Massive stars in the Galactic center

Adriane Liermann

Potsdam University

21. Oktober 2008
Outline

1 Motivation
 • Massive stars

2 Stellar Winds
 • Basic ideas
 • Model atmospheres

3 The Quintuplet Cluster
 • The Galactic Center region
 • The Observations
 • Massive evolved stars
1 Motivation
- Massive stars

2 Stellar Winds
- Basic ideas
- Model atmospheres

3 The Quintuplet Cluster
- The Galactic Center region
- The Observations
- Massive evolved stars
Massive stars

- initial mass $M_{\text{init}} > 8 \, M_\odot$ (> 20 \, M_\odot!)
- CNO cycle is dominant nuclear process
Massive stars

- initial mass $M_{\text{init}} > 8 \, M_\odot$ (> 20 M_\odot)
- CNO cycle is dominant nuclear process
- evolution (Crowther et al. 1995)
Massive stars

- initial mass $M_{\text{init}} > 8 \, M_\odot$ ($> 20 \, M_\odot$!)
- CNO cycle is dominant nuclear process
- evolution (Crowther et al. 1995)

$$25M_\odot < M_{\text{init}} < 60M_\odot :$$
- O \rightarrow Of \rightarrow RSG or LBV \rightarrow WN 8 \rightarrow WNE \rightarrow WC \rightarrow SN
Massive stars

- initial mass $M_{\text{init}} > 8 \, M_\odot$ (> $20 \, M_\odot$!)
- CNO cycle is dominant nuclear process

- evolution (Crowther et al. 1995)

$25M_\odot < M_{\text{init}} < 60M_\odot$:
- $O \rightarrow O_f \rightarrow$ RSG or LBV \rightarrow WN 8 \rightarrow WNE \rightarrow WC \rightarrow SN

$> 60M_\odot$:
- $O \rightarrow O_f \rightarrow$ WNL + abs \rightarrow WN 7 (\rightarrow WNE) \rightarrow WC \rightarrow SN
Why are massive stars important?

- evolve on small timescales
 → trigger/terminator for star formation
Why are massive stars important?

- evolve on small timescales
 → trigger/terminator for star formation
- radiate maximum in UV range
 → photo-ionized regions, circumstellar bubbles, interstellar shells
Why are massive stars important?

- evolve on small timescales
 → trigger/terminator for star formation
- radiate maximum in UV range
 → photo-ionized regions, circumstellar bubbles, interstellar shells
- stellar winds
 → major driver of momentum & kinetic energy, shocks in the ISM, enrichment of the ISM
Why are massive stars important?

- evolve on small timescales
 - trigger/terminator for star formation
- radiate maximum in UV range
 - photo-ionized regions, circumstellar bubbles, interstellar shells
- stellar winds
 - major driver of momentum & kinetic energy, shocks in the ISM, enrichment of the ISM

KEY PLAYERS in COSMIC RECYCLING!
1 Motivation
 - Massive stars

2 Stellar Winds
 - Basic ideas
 - Model atmospheres

3 The Quintuplet Cluster
 - The Galactic Center region
 - The Observations
 - Massive evolved stars
Stellar winds

- Castor, Abbott and Klein - CAK theory 1975
 radiative pressure on spectral lines in the atmosphere
Stellar winds

- Castor, Abbott and Klein - CAK theory 1975
 radiative pressure on spectral lines in the atmosphere
- photon momentum transfer
Stellar winds

- Castor, Abbott and Klein - CAK theory 1975
 radiative pressure on spectral lines in the atmosphere
- photon momentum transfer
- Nugis & Lamers 2000:
 WN stars $\dot{M} \sim L^{1.7}$
Observational evidence - P Cygni line profiles

I_+^ν (cont)

I_+^ν (core rays)

I_+^ν (non-core)
Observational evidence - P Cygni line profiles

$I^+_\nu (cont)$

$I^+_\nu (core rays)$

$I^+_\nu (non-core)$

Flux F_ν

Wavelength λ

+

=

Adriane Liermann (Potsdam University)
observed stellar winds:

- A and B supergiants - absorption lines (Kudritzki!)
- O/Of stars - emission lines + UV resonance lines as P Cygni
- WR stars - emission lines + P Cygni
PoWR - Potsdam Wolf-Rayet code for expanding atmospheres (Hamann et al.)

- spherical symmetric stationary atmosphere
PoWR - Potsdam Wolf-Rayet code for expanding atmospheres (Hamann et al.)

- spherical symmetric stationary atmosphere
- velocity field:
 \[v(r) = v_\infty \left(1 - \frac{r_0}{r}\right)^\beta \]
PoWR - Potsdam Wolf-Rayet code for expanding atmospheres (Hamann et al.)

- spherical symmetric stationary atmosphere
- velocity field:
 \[v(r) = v_\infty \left(1 - \frac{r_0}{r}\right)^\beta \]

⇒ radiative transfer in non-LTE
PoWR - Potsdam Wolf-Rayet code for expanding atmospheres (Hamann et al.)

- spherical symmetric stationary atmosphere
- velocity field: \(v(r) = v_\infty \left(1 - \frac{r_0}{r}\right)^\beta \)

 \(\Rightarrow \) radiative transfer in non-LTE

\(\Rightarrow \) model grids
Fitting an emission line spectrum

Hamann et al. 2006
Fitting a spectral energy distribution

Hamann et al. 2006

DM=12.55 mag E_{b-v}=0.24 shift=1.05 dex CARDELLI 3.10
M_v = -7.05 mag 6.49 6.43 6.097 6.012 5.816
WR024

log F_λ [erg s^{-1} cm^{-2} Å^{-1}]

log λ [Å]
1 Motivation
 - Massive stars

2 Stellar Winds
 - Basic ideas
 - Model atmospheres

3 The Quintuplet Cluster
 - The Galactic Center region
 - The Observations
 - Massive evolved stars
The Galactic Center

- accessible by IR and radio observations
- 3 young massive stellar clusters: Arches, Quintuplet, Central cluster
- stellar population: massive stars!
The Quintuplet Cluster

- (super)massive cluster $\sim 10^4 M_\odot$
- 30 pc projected distance from GC (Okuda et al. 1989, 1990)
- 4 Million years old (Figer et al. 1999)
- cluster radius about 1 pc

- named after 5 prominent (back then featureless) stars
The Observations

- ESO SINFONI-SPIFFI (no AO)
- 22 target fields of 8×8 arcsec FOV
- K grating (1.95 - 2.45 μm)
The Quintuplet Cluster

Massive evolved stars

(backgroundColor: HST image, PI D. Figer, STScI)
The Catalog

- 160 flux-calibrated K-band spectra
- 98 early-type stars
- 62 late-type stars
- synthetic K_s photometry
160 stars
Photometric completeness

![Histogram of Ks magnitudes](image-url)
Massive stars in the Quintuplet

- evolved stars: 4 WN stars & 9 WC stars (6 WN and 10 WC in total)

⇒ to be analyzed with PoWR code:
 fit emission line spectra
 fit spectral energy distribution
 derive stellar parameters
Thanks for your attention