

VAST - a real-time pipeline for detecting radio transients and variables on the Australian SKA Pathfinder (ASKAP) telescope.

Jay Banyer
The University of Sydney

Presentation Overview

- The Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope
- > The Variable and Slow Transient (VAST) project:
 - Survey and project overview
 - Pipeline overview
 - Capacity challenges
 - Prototype pipeline

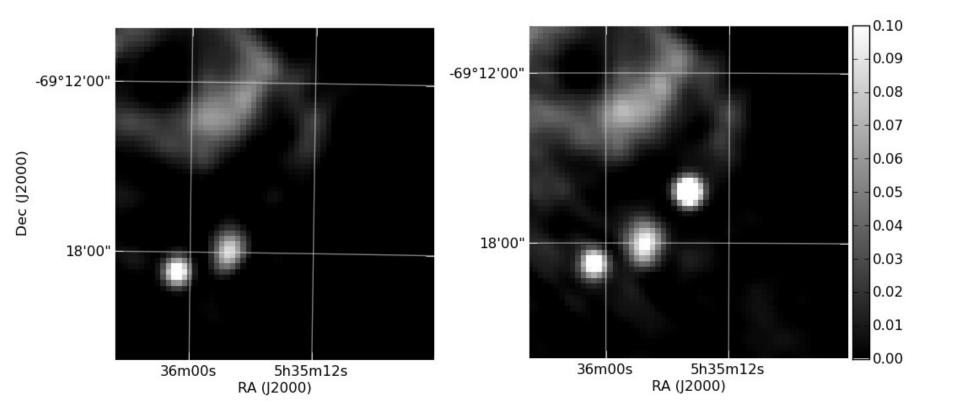
ASKAP: Australian SKA Pathfinder

- 36 dish radio interferometer
- Very fast survey speed: can image the entire visible sky in two nights - current telescopes take years!
- Located in the desert in Western Australia
- > Radio quiet site

ADASS 2011 - Jay Banyer

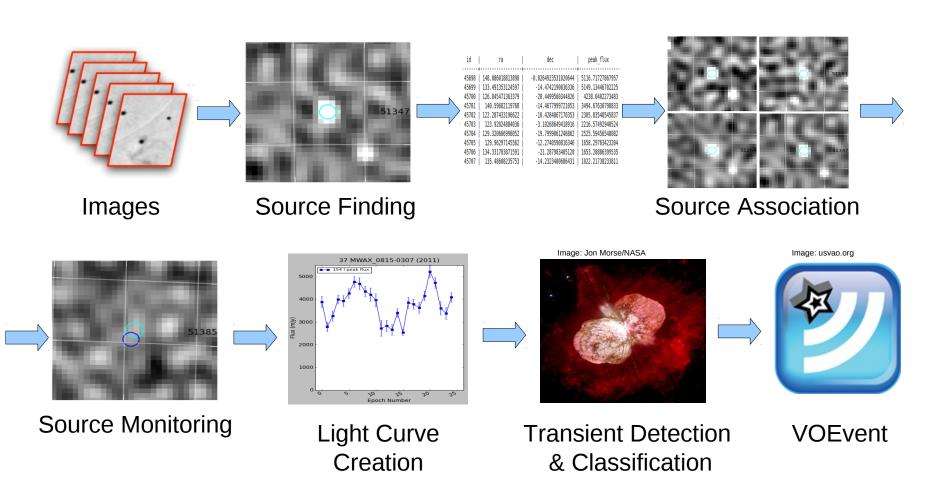
> First science in 2013

Credit: John Sarkissian, CSIRO


VAST Survey Overview

> Goals:

- Detect variable and transient phenomena at radio wavelengths
- Achieve an unprecedented combination of sky area, sensitivity and time sampling
- Automatic classification of sources
- Automatic triggering of events to the community e.g. VOEvent
- > All in near real-time
- Several survey regimes, including looking at most of the southern sky every night for 2 years
- "Slow" transients means changes over 5 seconds or more


Spot the difference?

SN 1987A, Molonglo Observatory Synthesis Telescope (MOST)

VAST Pipeline Functionality

VAST Collaboration

- A collaboration with diverse scientific interests.
- Led by Tara Murphy (The University of Sydney) and Shami Chatterjee (Cornell University)
- http://www.physics.usyd.edu.au/sifa/vast

Hayley Bignall¹, Geoffrey Bower², Joshua Bloom², Jess Broderick³, *Edwin Budding⁴, Robert Cameron⁵, David Champion⁶, Shami Chatterjee⁷, *Stéphane Corbel⁸, James Cordes⁷, David Coward⁹, *Steve Croft², James Curran¹⁰, Avinash Deshpande¹¹, George Djorgovski¹², Richard Dodson⁹, Philip Edwards¹³, Simon Ellingsen¹⁴, Alan Fekete¹⁰, Rob Fender³, Dale Frail¹⁵, Bryan Gaensler¹⁰, Duncan Galloway¹⁶, Matthew Graham¹², Anne Green¹⁰, Lincoln Greenhill¹⁷, *Paul Hancock¹⁰, George Hobbs¹³, Richard Hunstead¹⁰, *Scott Hyman¹⁸, Simon Johnston¹³, Glenn Jones¹², *Atish Kamble¹⁹, David Kaplan¹⁹, Aris Karastergiou²⁰, *Slava Kitaeff²¹, Michael Kramer⁶, *Casey Law², Joseph Lazio^{23,36}, Jim Lovell¹⁴, Jean-Pierre Macquart¹, Ashish Mahabal¹², Walid Majid²³, Maura McLaughlin²⁴, Andrew Melatos²⁵, Tara Murphy¹⁰, Ray Norris¹³, *Roopesh Ojha²², Steve Ord¹⁷, Sabyasachi Pal⁹, Michele Pestalozzi³⁵, Andrea Possenti²⁷, Peter Quinn⁹, Nanda Rea²⁸, Cormac Reynolds ¹, Roger Romani⁵, Stuart Ryder²⁹, Elaine Sadler¹⁰, Brian Schmidt³⁰, Bruce Slee¹³, Ingrid Stairs³¹, Ben Stappers³², Lister Staveley-Smith⁹, Jamie Stevens¹³, *David Thompson²³, Steven Tingay¹, Ulf Torkelsson²⁶, Tasso Tzioumis¹³, Marten van Kerkwijk³³, *Kiri Wagstaff²³, Mark Walker³⁴, Randall Wayth¹, Linqing Wen⁹, Matthew Whiting¹³, *Peter Williams², Roy Williams¹² and others...

Source Finding in VAST

Image ref: Paul Hancock



VAST Capacity Challenges

- > Input rate:
 - 1 x ~8GB image cube every 5s (60TB / day)
 - 1 x larger, more sensitive image cube e.g. every 1 hour
- > ~20,000 Gaussian fits per second
- > ~20,000 measurements stored per second
- > ~5,000 cone search queries per second
- > ~5,000 light curve changes per second to analyse
- >~720 million measurements stored per 10 hour observation
- > We need a big computer!

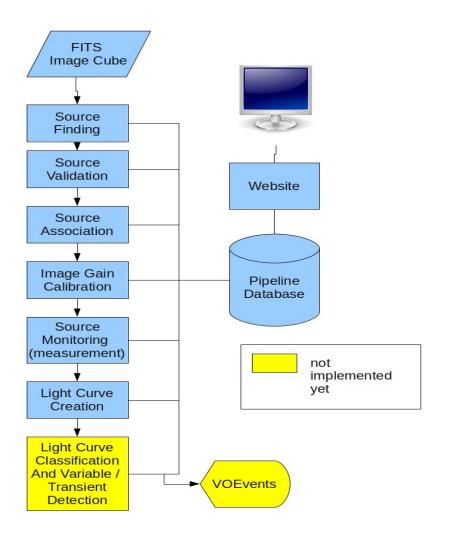
A big computer?

Credit: http://www.ronmartin.net

ASKAP Computer

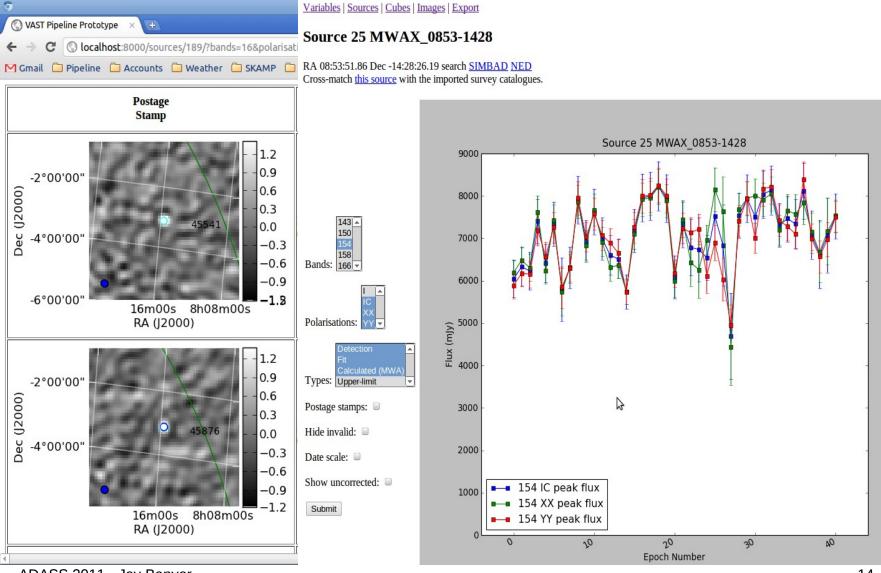
- A petascale computing cluster at the Pawsey Supercomputing Centre in Perth, Western Australia
- > Will be one of the most powerful supercomputers globally
- This cluster will run the telescope imaging etc. and the science pipelines including VAST

Credit: iVEC



VAST Pipeline Prototype

- The VAST collaboration is developing a prototype pipeline
- > Goals:
 - Develop the functional requirements for the real pipeline
 - Discover and address the issues facing the VAST survey
 - Do transient detection on data from other telescopes:
 - ASKAP BETA (ASKAP with 6 or 12 dishes)
 - Murchison Widefield Array (MWA)
 - Australia Telescope Compact Array (ATCA)
 - Very Large Array (VLA) (archival)
 - SKA Molonglo Prototype (SKAMP)


VAST Pipeline Prototype

- > Pipeline is fully automatic
- > Dynamic website to view results
- Handles FITS images from any radio telescope (with minor adjustments, in theory...)
- Implemented in Python
- PostgreSQL database with Q3C for coordinate searches
- Django for dynamic website
- Libraries: aplpy, pyfits, pywcs, matplotlib, mpfit
- Capacity: ~20 source measurements per second. 1000 times too slow... but it's a prototype!

VAST Prototype Screenshots

Summary

- > ASKAP is a radio telescope with unprecedented survey speed being built in Western Australia
- The VAST survey will detect radio transients and variables using ASKAP
- VAST will use a near real-time pipeline on a large computing cluster and will face significant capacity challenges
- A prototype pipeline exists and is under continuing development. It can be used on data from any radio telescope