VAST - a real-time pipeline for detecting radio transients and variables on the Australian SKA Pathfinder (ASKAP) telescope. Jay Banyer The University of Sydney #### **Presentation Overview** - The Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope - > The Variable and Slow Transient (VAST) project: - Survey and project overview - Pipeline overview - Capacity challenges - Prototype pipeline #### **ASKAP:** Australian SKA Pathfinder - 36 dish radio interferometer - Very fast survey speed: can image the entire visible sky in two nights - current telescopes take years! - Located in the desert in Western Australia - > Radio quiet site ADASS 2011 - Jay Banyer > First science in 2013 Credit: John Sarkissian, CSIRO #### **VAST Survey Overview** #### > Goals: - Detect variable and transient phenomena at radio wavelengths - Achieve an unprecedented combination of sky area, sensitivity and time sampling - Automatic classification of sources - Automatic triggering of events to the community e.g. VOEvent - > All in near real-time - Several survey regimes, including looking at most of the southern sky every night for 2 years - "Slow" transients means changes over 5 seconds or more # **Spot the difference?** SN 1987A, Molonglo Observatory Synthesis Telescope (MOST) # **VAST Pipeline Functionality** #### **VAST** Collaboration - A collaboration with diverse scientific interests. - Led by Tara Murphy (The University of Sydney) and Shami Chatterjee (Cornell University) - http://www.physics.usyd.edu.au/sifa/vast Hayley Bignall¹, Geoffrey Bower², Joshua Bloom², Jess Broderick³, *Edwin Budding⁴, Robert Cameron⁵, David Champion⁶, Shami Chatterjee⁷, *Stéphane Corbel⁸, James Cordes⁷, David Coward⁹, *Steve Croft², James Curran¹⁰, Avinash Deshpande¹¹, George Djorgovski¹², Richard Dodson⁹, Philip Edwards¹³, Simon Ellingsen¹⁴, Alan Fekete¹⁰, Rob Fender³, Dale Frail¹⁵, Bryan Gaensler¹⁰, Duncan Galloway¹⁶, Matthew Graham¹², Anne Green¹⁰, Lincoln Greenhill¹⁷, *Paul Hancock¹⁰, George Hobbs¹³, Richard Hunstead¹⁰, *Scott Hyman¹⁸, Simon Johnston¹³, Glenn Jones¹², *Atish Kamble¹⁹, David Kaplan¹⁹, Aris Karastergiou²⁰, *Slava Kitaeff²¹, Michael Kramer⁶, *Casey Law², Joseph Lazio^{23,36}, Jim Lovell¹⁴, Jean-Pierre Macquart¹, Ashish Mahabal¹², Walid Majid²³, Maura McLaughlin²⁴, Andrew Melatos²⁵, Tara Murphy¹⁰, Ray Norris¹³, *Roopesh Ojha²², Steve Ord¹⁷, Sabyasachi Pal⁹, Michele Pestalozzi³⁵, Andrea Possenti²⁷, Peter Quinn⁹, Nanda Rea²⁸, Cormac Reynolds ¹, Roger Romani⁵, Stuart Ryder²⁹, Elaine Sadler¹⁰, Brian Schmidt³⁰, Bruce Slee¹³, Ingrid Stairs³¹, Ben Stappers³², Lister Staveley-Smith⁹, Jamie Stevens¹³, *David Thompson²³, Steven Tingay¹, Ulf Torkelsson²⁶, Tasso Tzioumis¹³, Marten van Kerkwijk³³, *Kiri Wagstaff²³, Mark Walker³⁴, Randall Wayth¹, Linqing Wen⁹, Matthew Whiting¹³, *Peter Williams², Roy Williams¹² and others... # **Source Finding in VAST** Image ref: Paul Hancock # **VAST Capacity Challenges** - > Input rate: - 1 x ~8GB image cube every 5s (60TB / day) - 1 x larger, more sensitive image cube e.g. every 1 hour - > ~20,000 Gaussian fits per second - > ~20,000 measurements stored per second - > ~5,000 cone search queries per second - > ~5,000 light curve changes per second to analyse - >~720 million measurements stored per 10 hour observation - > We need a big computer! # A big computer? Credit: http://www.ronmartin.net #### **ASKAP Computer** - A petascale computing cluster at the Pawsey Supercomputing Centre in Perth, Western Australia - > Will be one of the most powerful supercomputers globally - This cluster will run the telescope imaging etc. and the science pipelines including VAST Credit: iVEC ### **VAST Pipeline Prototype** - The VAST collaboration is developing a prototype pipeline - > Goals: - Develop the functional requirements for the real pipeline - Discover and address the issues facing the VAST survey - Do transient detection on data from other telescopes: - ASKAP BETA (ASKAP with 6 or 12 dishes) - Murchison Widefield Array (MWA) - Australia Telescope Compact Array (ATCA) - Very Large Array (VLA) (archival) - SKA Molonglo Prototype (SKAMP) ## **VAST Pipeline Prototype** - > Pipeline is fully automatic - > Dynamic website to view results - Handles FITS images from any radio telescope (with minor adjustments, in theory...) - Implemented in Python - PostgreSQL database with Q3C for coordinate searches - Django for dynamic website - Libraries: aplpy, pyfits, pywcs, matplotlib, mpfit - Capacity: ~20 source measurements per second. 1000 times too slow... but it's a prototype! # **VAST Prototype Screenshots** #### **Summary** - > ASKAP is a radio telescope with unprecedented survey speed being built in Western Australia - The VAST survey will detect radio transients and variables using ASKAP - VAST will use a near real-time pipeline on a large computing cluster and will face significant capacity challenges - A prototype pipeline exists and is under continuing development. It can be used on data from any radio telescope