Ben Barsdell Matthew Bailes Christopher Fluke David Barnes

SPOTTING RADIO TRANSIENTS

WITH THE HELP OF GPUS

Background

- High Time Resolution Universe (HTRU) survey
 - Running since 2008, now entering deep phase
- Uses the Parkes 64m radio telescope
 - Located in remote NSW, Australia
 - Goal is to discover new pulsars and radio transients
 - (And diamond planets!)

Survey specs

400 MHz BW @ 1381.8 MHz

1024 freq. channels

64µs time resolution

2-bit sampling

The Plan

- Current pipeline takes
 - > 30 mins per 10 min observation
 - Necessitates off-line processing
 - Means transfers, tapes and long waits
- Would like to speed things up to real-time
 - Instant feedback and follow-up observations
 - Triggered baseband data dumps
- How to do it?
- Time to bring out the heavy artillery...

The GPU

Ben Barsdell - ADASS 2011

The detection pipeline

RFI mitigation

- Interference is a big problem
- No easy solution
 - Military radar too useful
 - Prime-time TV too popular
- Some things can be done
 - Sigma clipping
 - Spectral kurtosis
 - Coincidence rejection

Coincidence rejection

- Use multi-beam receiver as reference antennas
 - Assume RFI is not localised
- Apply simple coincidence criteria:
 - E.g., 3σ in 4+ beams => RFI
- Or use Eigen-decomposition approach
- Run on GPU as a straightforward transform
 - PRFI_mask[i] = is_RFI(multibeam_data[i])
 - Note: Eigen-decomp method makes is_RFI() trickier

Dedispersion

- Unknown distance => search through DM space
- Pick DM, dedisperse, search, repeat
 - ~1200 DM trials

Dedispersion

- Computationally intensive problem
 - Biggest time-consumer
- Runs really well on a GPU
 - Lots of parallelism
 - High arithmetic intensity
 - Good memory access patterns
 - No branching

Other algorithms

- Baseline removal
 - Subtract running mean

- Port to GPU using parallel prefix sum
- Matched filtering
 - Convolve with 1D boxcar

- Can also use parallel prefix sum
- Sigma cut + peak find
 - Threshold and segment

Port to GPU using segmented reduction

Preliminary results

- Dedispersion: 20 mins → 2.5 mins
 - Using 'direct' method on 1 Tesla C2050 GPU
 - Details in Barsdell et al. (refereed)
- Nearly completed porting other algorithms
- Goal of 10 mins well within reach!

Looking ahead

- Real-time radio transient detection promises to
 - Simplify the data processing procedure
 - Enable immediate follow-up observations
 - Allow capture of high-resolution baseband data for significant events
 - Catch things like the 'Lorimer burst' as they happen!

Merci!

Hardware configuration

