
Future Astronomical Software Environment

FASE
P. Grosbøl, ESO
D. Tody, VAO/NRAO
L. Paioro, INAF
Y. Granet, LAM/OAMP
B. Garilli, INAF
C. Surace, LAM/OAMP
OPTICON FASE Network

Outline
● Main Objectives
● Architecture and Design
● Prototype Implementation
● Conclusions and Outlook

Why a Common Environment?

☛Difficult to share software
Not trivial to combine applications
Legacy systems have different scripts and API

☛Reduced support of legacy systems
Old, monolithic designs
No full support of new IT infrastructures
Lack of new applications

☛Limited scalability
Need to process large data sets
Utilize modern hardware options

OPTICON FASE Network

☛FASE Network created to
Discuss needs for new environment
Outline main requirements
Propose architecture and design concepts
Demonstrate feasibility through prototype

☛Funded by EC FP6/FP7 through OPTICON
Work 2004 → 2011
Meetings and 1-2 FTE for prototype (Milan+Marseille)

☛Participation
Members from major European institutes/systems
Associate members from US (VAO and others)

☛Twiki: https://www.eso.org/wiki/bin/view/Opticon

Requirements

☛Support popular scripting languages
☛Support standard compiles languages
☛Easy development of new applications
☛Separation between algorithms and IT
☛Access to VO and Web applications
☛Access to legacy applications/systems
☛Deployment on laptops → clusters → …
☛Provide scalability
☛See e.g BoF at ADASS XVI

Architecture and Design

☛OMG distributed object concept
Mature architecture
Language neutral
Allow multiple implementations of infrastructure
Main parts

Clients
Software bus
Services
Containers
Components

Elements of Environment

☛Main items
Client interface
Application framework (Tody et al. 2009 ADASS XVIII)

Message bus
Package Manager
General services
Containers

Component interface

Prototype

☛Proof-of-concept
Access to VO and legacy apps.
Basic scalability

☛Choices
Python for scripting
Framework:
● SAMP bus, Packaging Tool in Java, general services in Python
Container for Python, C/FORTRAN

☛Implementation done by
 Milan (INAF) and Marseille (LAM/OAMP)

☛Prototype available for download
http://faserepo.iasf-milano.inaf.it/fase

☛Details see Poster 109 Luigi Paioro et al.

Prototype Repository

Proof of concept

☛Feasibility demonstrated by prototype
Scripting in Python or Unix shell CLI
Framework in Python, SAMP bus, Packaging Tool in Java
Basic containers for C and Python
Interface to legacy applications e.g. ESO CPL
Limited scalability demonstrated for CPU cluster
Interaction with VO enabled tasks through SAMP
Used for actual pipeline (Milan)

Different Data Models not resolved by environment
Common Data Model e.g. VO
Explicit transformation

Conclusions I - Results

☛Requirements for environment
Document with 200+ explicit requirements (wide review)

☛Architectural concept
Common US+EU recommendation
Based on distributed object concept

☛Feasibility demonstrated by prototype
☛Compatible with VO

ref. VAO Desktop initiative
☛Compliments VO

Conclusions II – What now?

☛Technical implementation - simple
Use of available open-source tools
Ready for Reference implementation (<5 FTE)

☛Main issues: Political + financial
Will to agree on common, shared API
Find organization to support environment

☛Common API as important for software sharing
as FITS has been for data sharing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

