
Made with OpenOffice.org 1

Craig Warner
Christopher Packham
Stephen Eikenberry
Anthony Gonzalez

University of Florida

GPUs and Python: A Recipe for
Lightning-Fast Data Pipelines

Made with OpenOffice.org 2

Volume of data produced per night is increasing
rapidly as arrays increase their pixel numbers
and mosaics of arrays become more common.

Looking forward, the Large Synoptic Survey
Telescope (LSST) is expected to produce 30
TB of data per night!

Current data reduction pipelines are unable to
handle this amount of data flow.

New streamlined and rapid data reduction
processes are thus critical.

Astronomical amounts of data!

Made with OpenOffice.org 3

GPUs: A possible solution?

Modern Graphics Processing Units (GPUs)
contain hundreds of processing cores, each of
which can process hundreds of concurrent threads

Nvidia's Compute Unified Device Architecture
(CUDA) platform allows developers to design
massively parallel algorithms for their GPUs

Parallelizing algorithms for GPUs can provide
speed-ups of up to around 100X!!!

Made with OpenOffice.org 4

A Perfect Recipe

Data pipelines are perfectly suited for massive
parallelization because many algorithms are
performed on a per-pixel basis.

The PyCUDA module and python's native C-API
allow CUDA code to be easily integrated into
existing python data pipeline frameworks.

We use an Nvidia 580 GTX for our tests

Made with OpenOffice.org 5

PyCUDA Samples

PyCUDA's SourceModule allows CUDA code to
be compiled and easily linked into python code

The above CUDA code will be compiled at
import time and can be called as a python method

UFGpuOps_mod = SourceModule("""
__global__ void gpu_linearity_float(float *output, float *input, float *coeffs, int ncoeffs) {

const int i = blockDim.x*blockIdx.x + threadIdx.x;
int n = 1;
output[i] = input[i]*coeffs[0];
for (int j = 1; j < ncoeffs; j++) {
 n++;
 output[i] += coeffs[j] * pow(input[i], n);
}

}
""")

gpu_linearity = UFGpuOps_mod.get_function("gpu_linearity_float")
output = empty(data.shape, "Float32")
gpu_linearity(drv.Out(output), drv.In(data), drv.In(coeffs), int32(ncoeffs), grid=(blocks,1),

block=(block_size,1,1))

Made with OpenOffice.org 6

CUDA and Python's C-API

Python's C-API can also be used to link in
compiled C code with CUDA library calls

First compile the .cu file with nvcc into a shared
object. Then use g++ to link the .so file with
libcuda and libcudart into a library that can be
imported into python.

#include <thrust/device_vector.h>
#include <thrust/sort.h>
extern "C" {
 static PyObject * gpumedian(PyObject *self, PyObject *args, PyObject *keywds);
 void gpusort_float(float *data, int n) {
 thrust::device_vector<float> d_x(data, data+n);
 thrust::sort(d_x.begin(), d_x.end());
 thrust::copy(d_x.begin(), d_x.end(), data);
 }
 static PyObject * gpumedian(PyObject *self, PyObject *args, PyObject *keywds) {
 ... }
}

Made with OpenOffice.org 7

Results: Linearity correction

3rd order linearity correction: 66 X faster!

Made with OpenOffice.org 8

 Results: Geometric transformation

5th order geometric transformation: 339 X faster!!

Made with OpenOffice.org 9

Results: 1-d median

Median of 2048x2048 image: gpu thrust sort is 40
X faster than numpy's median (uses numpy's sort)
and 4.4 X faster than C quickselect.

Made with OpenOffice.org 10

Results: 2-d median

Median of rows in 2048x2048 image: PyCUDA
quickselect implementation is 13.2 X faster than
numpy and 3.5 X faster than C quickselect.

Made with OpenOffice.org 11

Comparisons: GPU FTW again!

Python GPU

1.503s 0.048s

Cosmic Ray Removal

of
images

IRAF Python GPU

9 364.2s 169.9s 7.46s

23 912.6s 455.1s 19.42s

Finding shifts between images with
xregister using full 2048x2048 frame

of
images

Drizzle
kernel

IRAF
drizzle

Python
drihizzle

GPU
drihizzle

9 point 139.44s 78.94s 2.00s

9 turbo 143.67s 126.20s 2.09s

23 point 371.95s 141.35s 5.17s

23 turbo 387.96s 261.00s 5.35s

Drizzling images onto output grid while applying
a 6th order geometric distortion correction and
subpixel shifts between images

Made with OpenOffice.org 12

Imcombine and Overall Results
images weight reject IRAF Python GPU

9 none none 4.22s 2.46s 0.62s

9 median none 4.60s 10.33s 1.12s

9 none sigclip 5.53s 6.50s 0.63s

9 median sigclip 6.71s 17.48s 1.14s

23 none none 5.39s 8.00s 2.46s

23 median none 10.64s 27.29s 4.17s

23 none sigclip 16.18s 27.70s 2.71s

23 median sigclip 24.60s 49.46s 4.29s

Median combining images
using 3 implementations of
imcombine with different
weightings and rejection
criteria

CPU 1-pass GPU 1-pass GPU 1-pass BE CPU 2-pass GPU 2-pass

754.8s 62.4s 75.5s* 1035.5s 155.2s

Comparison of overall times to process test data set:
Preliminary results are a speed up of 12 X with 1-pass

sky subtraction and 7 X with 2-pass.

*BE = big endian – we achieve a 20% speed increase by overriding pyfits to
save images in little endian format, avoiding the need to byteswap.

Made with OpenOffice.org 13

Implications and Future Work

With further optimization, we believe it is
possible to achieve an overall speed gain of up to
a factor of 25!

We believe we can achieve a similar speed gain
by GPUizing spectroscopy algorithms.

This factor would only increase as larger array
sizes and newer GPUs provide for even higher
degrees of parallelization.

A speed gain of this magnitude would allow for
near real-time data processing, concurrent with
continuing observations, considerably optimizing
the observing process!

Made with OpenOffice.org 14

Super-FATBOY??

GPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

