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Volume of data produced per night is increasing 
rapidly as arrays increase their pixel numbers 
and mosaics of arrays become more common.

Looking forward, the Large Synoptic Survey 
Telescope (LSST) is expected to produce 30 
TB of data per night!

Current data reduction pipelines are unable to 
handle this amount of data flow.

New streamlined and rapid data reduction 
processes are thus critical.

Astronomical amounts of data!
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GPUs: A possible solution?

Modern Graphics Processing Units (GPUs) 
contain hundreds of processing cores, each of 
which can process hundreds of concurrent threads

Nvidia's Compute Unified Device Architecture 
(CUDA) platform allows developers to design 
massively parallel algorithms for their GPUs

Parallelizing algorithms for GPUs can provide 
speed-ups of up to around 100X!!!
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A Perfect Recipe

Data pipelines are perfectly suited for massive 
parallelization because many algorithms are 
performed on a per-pixel basis.

The PyCUDA module and python's native C-API 
allow CUDA code to be easily integrated into 
existing python data pipeline frameworks.

We use an Nvidia 580 GTX for our tests
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PyCUDA Samples

PyCUDA's SourceModule allows CUDA code to 
be compiled and easily linked into python code

The above CUDA code will be compiled at 
import time and can be called as a python method

UFGpuOps_mod = SourceModule("""
__global__ void gpu_linearity_float(float *output, float *input, float *coeffs, int ncoeffs) {

const int i = blockDim.x*blockIdx.x + threadIdx.x;
int n = 1;
output[i] = input[i]*coeffs[0];
for (int j = 1; j < ncoeffs; j++) {
    n++;
    output[i] += coeffs[j] * pow(input[i], n);
}

}
""")

gpu_linearity = UFGpuOps_mod.get_function("gpu_linearity_float")
output = empty(data.shape, "Float32")
gpu_linearity(drv.Out(output), drv.In(data), drv.In(coeffs), int32(ncoeffs), grid=(blocks,1), 

block=(block_size,1,1))
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CUDA and Python's C-API

Python's C-API can also be used to link in 
compiled C code with CUDA library calls

First compile the .cu file with nvcc into a shared 
object.  Then use g++ to link the .so file with 
libcuda and libcudart into a library that can be 
imported into python.

#include <thrust/device_vector.h>
#include <thrust/sort.h>
extern "C" {
  static PyObject * gpumedian(PyObject *self, PyObject *args, PyObject *keywds);
   void gpusort_float(float *data, int n) {
    thrust::device_vector<float> d_x(data, data+n);
    thrust::sort(d_x.begin(), d_x.end());
    thrust::copy(d_x.begin(), d_x.end(), data);
  }
  static PyObject * gpumedian(PyObject *self, PyObject *args, PyObject *keywds) {
  ... }
}
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Results: Linearity correction

3rd order linearity correction: 66 X faster!
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  Results: Geometric transformation

5th order geometric transformation: 339 X faster!!



Made with OpenOffice.org 9

Results: 1-d median

Median of 2048x2048 image: gpu thrust sort is 40 
X faster than numpy's median (uses numpy's sort) 
and 4.4 X faster than C quickselect.
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Results: 2-d median

Median of rows in 2048x2048 image: PyCUDA 
quickselect implementation is 13.2 X faster than 
numpy and 3.5 X faster than C quickselect.
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Comparisons: GPU FTW again!

Python GPU

1.503s 0.048s

Cosmic Ray Removal

# of 
images

IRAF Python GPU

9 364.2s 169.9s 7.46s

23 912.6s 455.1s 19.42s

Finding shifts between images with 
xregister using full 2048x2048 frame

# of 
images

Drizzle 
kernel

IRAF 
drizzle

Python 
drihizzle

GPU 
drihizzle

9 point 139.44s 78.94s 2.00s

9 turbo 143.67s 126.20s 2.09s

23 point 371.95s 141.35s 5.17s

23 turbo 387.96s 261.00s 5.35s

Drizzling images onto output grid while applying 
a 6th order geometric distortion correction and 
subpixel shifts between images
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Imcombine and Overall Results
# images weight reject IRAF Python GPU

9 none none 4.22s 2.46s 0.62s

9 median none 4.60s 10.33s 1.12s

9 none sigclip 5.53s 6.50s 0.63s

9 median sigclip 6.71s 17.48s 1.14s

23 none none 5.39s 8.00s 2.46s

23 median none 10.64s 27.29s 4.17s

23 none sigclip 16.18s 27.70s 2.71s

23 median sigclip 24.60s 49.46s 4.29s

Median combining images 
using 3 implementations of 
imcombine with different 
weightings and rejection 
criteria

CPU 1-pass GPU 1-pass GPU 1-pass BE CPU 2-pass GPU 2-pass

754.8s 62.4s 75.5s* 1035.5s 155.2s

Comparison of overall times to process test data set:
Preliminary results are a speed up of 12 X with 1-pass 

sky subtraction and 7 X with 2-pass.

*BE = big endian – we achieve a 20% speed increase by overriding pyfits to 
save images in little endian format, avoiding the need to byteswap.
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Implications and Future Work

With further optimization, we believe it is 
possible to achieve an overall speed gain of up to 
a factor of 25!

We believe we can achieve a similar speed gain 
by GPUizing spectroscopy algorithms.

This factor would only increase as larger array 
sizes and newer GPUs provide for even higher 
degrees of parallelization.

A speed gain of this magnitude would allow for 
near real-time data processing, concurrent with 
continuing observations, considerably optimizing 
the observing process!



Made with OpenOffice.org 14

Super-FATBOY??

GPU
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