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The Task: Photometric Redshift Estimation

Abstract

The task of estimating an object’s redshift based on photomet-
ric data is one of the most important ones in astronomy. This
is especially the case for quasars. Common approaches for
this regression task in the field of astronomy are based on
nearest neighbor search, template fitting schemes, or combi-
nations of, e.g, standard clustering and regression techniques.
As we show in this work, simple frameworks like the k-nearest
neighbor regression scheme work extremely well if one consid-
ers the overall feature space (containing patterns of all objects
with low, middle, and high redshifts). However, such methods
seem to fail as soon as only few or even no training patterns
are given in the appropriate region of the feature space. In the
literature, a wide range of other regression techniques can be
found. Among the most popular ones are regularized regression
schemes like ridge regression or support vector regression. In
this work, we show that an out-of-the-box application of this type
of schemes for the whole feature space is difficult due to the in-
volved computational requirements and the specific properties
of the data at hand. However, in contrast to nearest neighbor
search schemes, such methods can be employed to extrapo-
late, i.e, to predict redshifts for patterns in new, unseen regions
of the feature space.

Data

We describe the use of machine learning regression models
to estimate the redshift of quasi-stellar radio sources (quasars)
based on photometric data. Our data set is based on the Sloan
Digital Sky Survey, which is said to be “one of the most ambi-
tious and influential surveys in the history of astronomy” [4]. The
data for this survey has been obtained via a 2.5 meter telescope
at the Apache Point Observatory which is equipped with two
special-purpose instruments: a 120 mega pixel camera and a
pair of spectrographs that collect photometric and spectroscopic
data, respectively.

Distant Quasars (RBG images)

Regression Models

For regression problems, one is given a training set T =
{(x′1, y

′
1), . . . , (x

′
n, y
′
n)} ⊂ X × R with patterns x′i ∈ X and as-

sociated labels y′i ∈ R. The goal of the learning process is to
generate a model that can predict reasonable labels for unseen
patterns.

k-Nearest Neighbor Regression
The k-nearest neighbor (kNN) regression model uses the k
closest objects from the given set of objects to assign a label to
a new object [1]. More precisely, the regression model is given
by the function

f (x) =
1

k

∑
x′i∈Nk(x)

y′i, (1)

where Nk(x) denotes the k-nearest neighbors of x ∈ X in the
training set T . To define closeness, arbitrary metrics can be
used. A popular choice is the Euclidean metric. The parameter
k determines the trade-off between local and global influence of
the patterns.

Influence of Parameter k

Support Vector Regression
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Loss Functions

Support vector regression (SVR) [1] models are of the form

inf
f∈Hk, b∈R

1

l

l∑
i=1

max
(
0, |y′i − (f (x′i) + b)| − ε

)
+ λ‖f‖2Hk

, (2)

where L(y, t) = max(0, |y − t| − ε) with ε ∈ R+ is called the
ε-insensitive loss. The space Hk is an appropriate hypothesis
space containing functions of the form

f (·) =
n∑
i=1

αik(·,x′i) (3)

with coefficients α1, . . . , αn ∈ R. Here, the function k : X × X →
R is a positive semidefinite kernel function which can be seen as
similarity measure for the patterns. The first term of the above
objective measures how well the function f can predict the (real-
valued) labels and the second term measures the complexity of
the model. The parameter λ determines the trade-off between
both objectives. Given X = Rd, common choices for the kernel
function are the linear kernel k(x′i,x

′
j) = 〈x′i,x

′
j〉 and the RBF

kernel k(x′i,x
′
j) = exp(−‖x

′
i−x′j‖

2

2σ2
).

From Complex to Simple Models

Results of Standard Redshift Estimation
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kNN Model
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SVR Model

Experimental Setup: The labels are based on the SDSS
quasar catalog [3]. As features, we consider all colors from
neighbored bands for each of the objects (u-g, g-r, r-i, i-z).
This results in a data set consisting of 104, 440 patterns in R4.
The kNN model is generated based on the whole data set. The
SVR model is trained on a selected subset of patterns (due to
the cubic runtime needed to train a model). Both models are
tested on the (remaining) patterns.

Weak-Gated Experts (Laurino et al.)

Looking over the Tea Cup’s Rim

The k-nearest neighbor model is well-suited for densely popu-
lated regions of the feature space. However, it cannot predict
any trends for unseen data. In contrast, support vector regres-
sion might yield reasonable models (depending on the data).
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Extrapolation: kNN vs. SVR

Experimental Setup: Only quasars with z ∈ [3, 4] are used for
training the models (again, a selected subset is used for SVR).
The remaining patterns are used for testing.
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