
Gaia Main Database
•Gaia Main Database will be the central repository of Gaia's Data located at ESAC
•It will receive and redistribute the Data to 5 different processing Centers:

•Barcelona: Intermediate Data Update
•Cambridge: Photometric Processing
•Geneva: Variability Analysis
•CNES-Toulouse: Spectroscopy, Object Processing, Classification
•Torino: Verification

The Data reduction will be an iterative process in order to deal with the interdependencies.
There will be several versions of the Main Database with increasing volumes of data
Some data will be generated and distributed continuously as it is received from the S/C and

processed
Other types of data will be available in one go at the end of the Processing Cycle

Data management aspects in the context
Gaia's distributed processing

Jose Hernandez*, Alexander Hutton*, Hassan Siddiqui*
* European Space Astronomy Centre of ESA, Madrid, Spain

Abstract
Gaia is ESA's ambitious space astrometry mission with a foreseen launch date around mid-2013. Its main objective is to perform a stellar census of the
1000 million brightest objects in our galaxy from which an astrometric catalog of micro-arcsec level accuracy will be constructed. The reduction of Gaia's data is a convoluted process involving several European
data centers distributed across Europe. Data will be shipped to these centers where part of the processing will take place and a central database will collect and integrate the results of the data reduction.

At past ADASS meetings we have presented the tools developed to support Collaborative Data Modeling in the distributed context of Gaia. Ensuring that the right version of the data gets used at the right
time and place will be far from trivial. We will describe how the data will be versioned and what will be the mechanisms put in place in order to track its provenance and control how the updated data gets used at
the processing centers.

Versioning the Data and Tracking its Origin

•Gaia's reduced data will be tagged with a solutionId
•This is a long number which encodes some information:

•What software generates the data
•When was the data generated
•A counter of the executions of a given software

Each record in Gaia's data has a field of type solutionId
Each solutionId has is a corresponding SolutionIdSummary Object giving more information
The solutionId encoding has some interesting properties:

•No collision between ranges used by different systems
•They increase monotonically with time
•They have enough range to cover all the executions of the SW

The solutionId also allows the Data Processing Centers to manage different versions of the
same data on a single store and select the appropriate one

The data size should not be an issue when the data is compressed
Each Data Processing centre will maintain a master database tracking the solutionIds

already consumed and assigning new ones
The solutionId is generated automatically by inspecting the Meta-Data from the SW jar file

being executed

Data Qualification
•We need to have the capability to send new versions of the same data within a processing

cycle
•This will happen when some problem is found in the pipelines and data needs to be

regenerated
•It may also happen when we get a more accurate version of some data (like Gaia's orbit)
•The MDB will issue a message to the Data Processing Centers “qualifying” some data
•Upon reception of the Qualifying messages the DPCs will execute them on the local

Stores

 <xs:element name="DataQualifier">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="qualifierDpc" type="dpc" maxOccurs="1" minOccurs="1"/>
 <xs:element name="id" type="xs:long" maxOccurs="1" minOccurs="1"/>
 <xs:element name="generationTime" type="xs:string" maxOccurs="1" minOccurs="1"/>
 <xs:element name="status" type="status" maxOccurs="1" minOccurs="1"/>
 <xs:element name="qualifiedData" type="dataSet" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="dataSet">
 <xs:sequence>
 <xs:element name="dataSelectExpr" type="xs:string"
 maxOccurs="1" minOccurs="1" />
 <xs:element name="dataTypes" type="xs:string"
 maxOccurs="1" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="status">
 <xs:restriction base="xs:string">
 <xs:enumeration value="VALID"/>
 <xs:enumeration value="RETRACTED"/>
 <xs:enumeration value="CORRUPTED"/>
 <xs:enumeration value="VALID_OUTDATED"/>
 </xs:restriction>
 </xs:simpleType>

N=

P0−0 P0−1 P0−2 P0−3 P1−0 P1−1
P0−0
P0−1
P0−2
P0−3
P1−0
P1−1

N=

P0−0 P0−1 P0−2 P0−3 P1−0 P1−1
P0−0
P0−1
P0−2
P0−3
P1−0
P1−1

x=N−1b

x=N−1b

Data Processing Centers



Some Scenarios

•Data Provenance will also be tracked
•For each solutionId the data types and solutionIds used as input will be recorded
•The real input data used will be validated against the “expected” input data
•This requires the DPCs to perform some book-keeping

DPCx realizes that some of the data sent to the MDB needs to be retracted and shouldn't
be used

DPCx generates a qualifying message for the relevant MDB tables and solutionIds and
sends them to the MDB

MDB will resend the received qualifying message to all the DPCs

Upon reception of the DataQualifier message at the DPC there will be different
possibilities:

DPCy checks that it doesn't use the retracted data, it doesn't need to take any action
DPCz uses the retracted data which had already been ingested locally at DPCz store but

not processed yet, DPCz identifies the ingested data by the solutionId and the MDB type
and deletes it

DPCw uses the retracted data which had already been ingested locally at DPCw, this
data was already processed. Here we could have two scenarios:

DPCw stops the processing, deletes the retracted data and also the corresponding output
of the DPCw pipeline

DPCw can't reprocess the data, instead it flags as invalid some of its pipeline output
affected by the data

Some possible scenarios

Gaia Main
Database

DPC
Databases

MDB
Schema
 Creator

M
D

B
 Ingestor

MDB
Schema
 Creator

M
D

B
 E

xtractor

GTS GTS

M
D

B
 E

xtractor

M
D

B
 Ingestor

MDB
Integrator

MDB
Dictionary

MDB/DPC Data
Model

Gaia Main Database
•Gaia Main Database will be the central repository of Gaia's Data located at ESAC
•It will receive and redistribute the Data to 5 different processing Centers:

•Barcelona: Intermediate Data Update
•Cambridge: Photometric Processing
•Geneva: Variability Analysis
•CNES-Toulouse: Spectroscopy, Object Processing, Classification
•Torino: Verification

The Data reduction will be an iterative process in order to deal with the interdependencies.
There will be several versions of the Main Database with increasing volumes of data
Some data will be generated and distributed continuously as it is received from the S/C and

processed
Other types of data will be available in one go at the end of the Processing Cycle

Data management aspects in the context
Gaia's distributed processing

Jose Hernandez*, Alexander Hutton*, Hassan Siddiqui*
* European Space Astronomy Centre of ESA, Madrid, Spain

Abstract
Gaia is ESA's ambitious space astrometry mission with a foreseen launch date around mid-2013. Its main objective is to perform a stellar census of the
1000 million brightest objects in our galaxy from which an astrometric catalog of micro-arcsec level accuracy will be constructed. The reduction of Gaia's data is a convoluted process involving several European
data centers distributed across Europe. Data will be shipped to these centers where part of the processing will take place and a central database will collect and integrate the results of the data reduction.

At past ADASS meetings we have presented the tools developed to support Collaborative Data Modeling in the distributed context of Gaia. Ensuring that the right version of the data gets used at the right
time and place will be far from trivial. We will describe how the data will be versioned and what will be the mechanisms put in place in order to track its provenance and control how the updated data gets used at
the processing centers.

Versioning the Data and Tracking its Origin

•Gaia's reduced data will be tagged with a solutionId
•This is a long number which encodes some information:

•What software generates the data
•When was the data generated
•A counter of the executions of a given software

Each record in Gaia's data has a field of type solutionId
Each solutionId has is a corresponding SolutionIdSummary Object giving more information
The solutionId encoding has some interesting properties:

•No collision between ranges used by different systems
•They increase monotonically with time
•They have enough range to cover all the executions of the SW

The solutionId also allows the Data Processing Centers to manage different versions of the
same data on a single store and select the appropriate one

The data size should not be an issue when the data is compressed
Each Data Processing centre will maintain a master database tracking the solutionIds

already consumed and assigning new ones
The solutionId is generated automatically by inspecting the Meta-Data from the SW jar file

being executed

Data Qualification
•We need to have the capability to send new versions of the same data within a processing

cycle
•This will happen when some problem is found in the pipelines and data needs to be

regenerated
•It may also happen when we get a more accurate version of some data (like Gaia's orbit)
•The MDB will issue a message to the Data Processing Centers “qualifying” some data
•Upon reception of the Qualifying messages the DPCs will execute them on the local

Stores

 <xs:element name="DataQualifier">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="qualifierDpc" type="dpc" maxOccurs="1" minOccurs="1"/>
 <xs:element name="id" type="xs:long" maxOccurs="1" minOccurs="1"/>
 <xs:element name="generationTime" type="xs:string" maxOccurs="1" minOccurs="1"/>
 <xs:element name="status" type="status" maxOccurs="1" minOccurs="1"/>
 <xs:element name="qualifiedData" type="dataSet" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="dataSet">
 <xs:sequence>
 <xs:element name="dataSelectExpr" type="xs:string"
 maxOccurs="1" minOccurs="1" />
 <xs:element name="dataTypes" type="xs:string"
 maxOccurs="1" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="status">
 <xs:restriction base="xs:string">
 <xs:enumeration value="VALID"/>
 <xs:enumeration value="RETRACTED"/>
 <xs:enumeration value="CORRUPTED"/>
 <xs:enumeration value="VALID_OUTDATED"/>
 </xs:restriction>
 </xs:simpleType>

N=

P0−0 P0−1 P0−2 P0−3 P1−0 P1−1
P0−0
P0−1
P0−2
P0−3
P1− 0
P1−1

N=

P0−0 P0−1 P0−2 P0−3 P1−0 P1−1
P0−0
P0−1
P0−2
P0−3
P1−0
P1−1

x=N−1b

x=N−1b

Data Processing Centers



Some Scenarios

•Data Provenance will also be tracked
•For each solutionId the data types and solutionIds used as input will be recorded
•The real input data used will be validated against the “expected” input data
•This requires the DPCs to perform some book-keeping

DPCx realizes that some of the data sent to the MDB needs to be retracted and shouldn't
be used

DPCx generates a qualifying message for the relevant MDB tables and solutionIds and
sends them to the MDB

MDB will resend the received qualifying message to all the DPCs

Upon reception of the DataQualifier message at the DPC there will be different
possibilities:

DPCy checks that it doesn't use the retracted data, it doesn't need to take any action
DPCz uses the retracted data which had already been ingested locally at DPCz store but

not processed yet, DPCz identifies the ingested data by the solutionId and the MDB type
and deletes it

DPCw uses the retracted data which had already been ingested locally at DPCw, this
data was already processed. Here we could have two scenarios:

DPCw stops the processing, deletes the retracted data and also the corresponding output
of the DPCw pipeline

DPCw can't reprocess the data, instead it flags as invalid some of its pipeline output
affected by the data

Some possible scenarios

Gaia Main
Database

DPC
Databases

MDB
Schema
 Creator

M
D

B
 In

g
e

sto
r

MDB
Schema
 Creator

M
D

B
 E

xtra
cto

r

GTS GTS

M
D

B
 E

xtra
cto

r

M
D

B
 In

g
e

sto
r

MDB
Integrator

MDB
Dictionary

MDB/DPC Data
Model

	Slide 1

