. oorrelatlon functlons In: cosmology

Rafael Ponce Mlguel Cardenas-l\/lontes Juan José Rodrlguez-Vazquez Euseblo Sanchez Ignaolo SeV|IIa

Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
| - J " w x L !

g |n this work, we have explored the advantages and drawbacks of using GPUs instead of CPUs in the calculation of a standard 2-point
M correlation function (2pcf) algorithm, which is useful for the analysis of Large Scale Structure of galaxies (LSS). Taking into account the
4 huge volume of data foreseen in our experiment, our main goal has been to accelerate significantly the analysis codes. We find that GPUs
offer a 100-fold increase in speed with respect to a single CPU without a significant deviation in the results. For comparison's sake, a MPI
version was developed as well. Some issues, like code implementation, which arise from using this option are discussed.

The two-point correlation function in cosmology N Difference between CPU code and GPU code

'

The 2pcft is a simple statistic that quantifies the clustering of a given distribution of
objects. In studies of the large scale structure of the Universe, it is an important tool
containing information about the matter clustering and the Universe evolution at

gl different cosmological epochs. A classical application of this statistic is the galaxy-
galaxy correlation function to find constraints on the matter density parameter Q_ or

. M the location of the baryonic acoustic oscillation peak. void bimning(float +xd, float +yd, float *zd, _global _ void bining(float +xd, float +yd, float +d,

int *ZZ, int numberoflines){ int *ZZ, int numberoflines){

o __shared__ float angle[threadsperblock];
" Comparison between CPU and GPU Correlation Function : float angle; CPU Code shared__ int dibin[threadsperblock]; GPU Code

Definition and estimation 0> | | " CPUresults + int dibin[angleposition]; --shared__ int temp|threadsperblockl;

GPU results 3¢ int cachelndex = threadldx.x;

8l Note that both codes are very similar, but in the GPU code we replaced

o the second “for” with a while strutcture and the speed increase comes
from doing many operations simultaneously. See the marked lines in GPU
code.

0.4 } - £ , 20 i b £15 _ temp [cacheIndex]=0;
or (int 1=0; i< numberoflines; i++){ for (int i=0; i< numberoflines; i++){

The 2pCf measures the eXC_eSS prObablllty . | : for (int j=0; j< numberoflines; j++){ int din idx = Dlockldr.x * blockDin % + threadldx .x; |
of finding a couple of galaxies separated |
by spatial distance r or angular distance 6 angle = acosf (angle) * 180./pi; 2dli]+zd[din_idx];
- IF - 3 = + I osition = int((angle)*binsperdegree); --syncthreads();

Wlth reSpeCt tO the prObablllty Of flndlng d ’ 0.1 . - [;f (d:biﬂ [posiziiﬂ]i:lj'lzls];erdzgr;ieftthﬂdegrees); if (angle[cacheIndex]>1.) angle[cacheIndex]=1.;
couple of galaxies separated by the same ' -
distance or angle in a random and .

; : : L ! - im_idx += blockDim.x # gridDim.x; } }
unlform dIStrIbUtlon In thIS Work We have 0.1 | I I I F “.' thmicﬁjd(&Zgl[thlli[e}adldx.xig ,dgemp[threacildx.x]); ¥

0 2 4 6 8 10

used the angular version of the degrees

correlation function w(0) though results Fig. 1: Comparison between two angular Our GPU code has been tested in three different GPU models and we

are extendible to the 3-dimensional RN ONSAE [ec oneWas) have got impressive execution time results. (See table below)

i calculated with CPU and the green one with
variant as well. GPU J Input file lines | CPU time | GPU time (GTX 295) | GPU time (C 1060) | GPU time (C 2050)

0.43 - 10° 10 hours 5.01 min. 4.85 min. 3.65 min.

0.86 - 10° 40 hours 19.97 min. 19.33 min. 14.60 min.

' Landy & Szalay haYe found an .eStlmatOr with minimum variance which is the 1.00 - 10° 55 hours 26.83 min. 25.97 min. 19.55 min.
standard one used in cosmological analyses: 1.29 - 108 90 hours 44.66 min. 43.23 min. 32.85 min.

1.72 - 10° 160 hours - 1.29 hours 58.43 min.
N DD(# N DR(6
;U(H) - (N, b) R [—(()) - (N, -) I;EH)) (1) 3.45 - 10° 644 hours - 5.21 hours 3.92 hours
gal Ll gal Li

6.89 . 10° 2560 hours - 20.70 hours 15.58 hours

angle = xd[i]*xd [j] + }Td[i]*}fd [j] + zd[i]*zd [j]; while (dim_idx < numberoflines){

N if (angle>1.) angle=1.; angle[cacheIndex] = xd[i]*xd[dim_idx] + yd[il*yd[dim_idx] +
0.2 F

V(degrees)

¥, dibin[position] = dibin[position]+1;
0 b M e R KRR g ek K KK H

i where Ngal is the number of galaxies in a real catalog, Nrd is de number of galaxies bl :
in a random catalog, DD(8) is the number of pairs separated by an angular distance 1 “'m | : A RN A
M O in the real catalog, RR(0) is the number of pairs separated by an angular distance :
3 © in the random catalog and DR(0) is the number of pairs separated by an angular GPU MPI Compa"son
distance 6 in the real catalog with respect to the random catalog.
1 * l I l |1 |

With the newest GPU we have got a sensitive speedup of 164 fold.

We also did an MPI version, in the next table we have the MPI| speedups
_ _ | ., | we have obtained. Note that the GTX295 GPU card has a perfomance
Key Points in our work similar to a cluster with a number of cores in the range from 64 and 128.

Cores Speedup -
* We try to improve previous work by creating a versatile and clear code able to do I = 1 ' e e e
the angular correlation function in less time and with no data input limitations ‘ 2.035 + 0.014 - =

A 3.748 £ 0.047

* Obtaining the angular correlation function implies calculating the arc-cosine. Itis & > 499 - ().084
the most important bottleneck in the 2pcf calculation

* Intensive use of shared memory: dot product and arc-cosine were fully
iImplemented in this type of memory

==

— -

* Due to the multithreaded nature of the kernel, we have used atomic functions to ; ' o0 S GTX295 C1060 C2050 MPI 64 MPI 128 MPI 256 MPI 512

avoid that two or more threads modify the same angle bin simultaneously when 210
creating the histogram of Eq. 1 — o | 00 NN Fig. 2: Comparison between MPI time and different
] B o > 2. UJU 3 Lol .
- GPUs time.

.
* To accelerate the calculation we do an intelligent bin filling avoiding the use of “if’ ¥ In the Fig. 2 we have a comparison between our time in MPI with 128,
clause | N 256 and 512 nodes and different GPUSs.

F . ¥ gl : x 3 L i -I Ii"l

Conclusions

We have developed an implementation of the Landy-Szalay two-point correlation function in CUDA to make use of the power GPUs have
to offer in terms of parallelization. The speed-up with respect to an 8-core CPU is 120-fold using the same algorithm. (With respect to an
3 implementation of k-trees in CPUs we obtain an increase of 3.7-fold). Several MPI options have been explored and single GPUs are only
| surpassed by the usage of more than 100 nodes (the MPI implementation being at a much higher cost, however). Some options to be
W explored remain, such as full-blown multi-GPU implementation, coding the k-trees or extending the work to higher order correlation
functions, for other types of cosmological analyses such as understanding non-Gaussianities in the primordial perturbations.

e]
¥ GOBERNO MEBMISTERIO CME

DE ESPAMA DE CIENCIA Centro de Investigacionas
E IMMMOYVACIOHN Energeicos ”E-"lzzﬂn'LEm-_.F-"
W TECnOlSQICOS

THE DARK

	Página 1

