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Developing a multi-survey time-series classifier presents several 

challenges. One problem is overcoming the sample selection bias 

which arises when the instruments or survey observing cadences 

differ between the training and testing datasets. In this case, the 

probabilistic distributions characterizing the sources in the training 

survey dataset differ from the source distributions in the other 

survey, resulting in poor results when a classifier is naively 

applied. 

To resolve this, we have developed the ALLStars active learning 

web framework which allows us to bootstrap a classifier onto a 

new survey using a small set of optimally chosen sources which are 

then presented to users for manual classification. 

Several iterations of this crowd-sourcing process results in a 

significantly improved classifier. Using this procedure, we have 

built a variable star light-curve classifier using OGLE, Hipparcos, 

and ASAS survey data and plan on bootstrapping onto SDSS and 

other active survey datasets.

Introduction

Active learning is a semi-supervised machine learning technique 

which incorporates a user or another resource capable of obtaining 

ground truth classifications for unlabeled data.  The unlabeled 

items are algorithmically 

chosen to result in 

maximum improvement of 

the classifier when labels 

are found.  

Active learning is well 

suited for adapting a 

classifier originally trained 

on one distribution of data 

(eg: a well understood 

historical survey) by both 

expanding the parameter 

space applicable to the 

classifier, and extending 

the classifier’s prior 

probability distribution to 

be more representative of a 

new dataset.

Active Learning algorithm logic

A critical part of active learning is the ability to generate ground-

truth labels for previously unknown sources.  We’ve developed the 

ALLStars web framework to give users access to all available 

information about a source so they may make certain 

classifications.  After reviewing the resources, the user can either 

make a science classification, flag the source as problematic, or 

skip to the next active learning source.  They may also rate their 

confidence and store comments for that source.

Once most users have classified the (~60) sources for a particular 

active learning iteration, final classifications are generated by 

combining user classifications using a proficiency weight.  A user’s 

classifications are then compared to the final classifications and 

their proficiency score is updated.  This mechanism allows a user 

to improve their score as they become more proficient.
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Active Learning & Selection Bias

ALLStars: Active Learning
                    Lightcurve Classification

Our initial OGLE & Hipparcos training dataset was selected by 

Debosscher3 and contains 1542 sources and 26 classes.  The ASAS 

Catalog of Variable Stars 4 version 1.1 contains 50124 sources.  

24% of these ACVS sources have “confident” machine learned 

classifications made by Pojma!ski.4  

To determine the effectiveness of our active learning trained 

classifier, we compared our classifications against those in the 

ACVS catalog.  

Active Learning Results
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After comparison of several machine learning frameworks, we 

found Random Forests to be the most effective for classifying our 

light-curve derived features.2  Our Python framework wraps the R 

based randomForest classifier and has additional modifications to 

allow imputation of missing-value attributes.

A selection of the 84 attributes we use to describes a source:

• 3 Lomb Scargle frequencies (pre-whitened, de-trended)

• model amplitude, relative phase, significance of each Lomb 

Scargle frequency and their 3 harmonics

• Amplitude, Flux percentile ratios

• model based slope percentiles

• Point2Point and median absolute deviation based features

• Color differences from the associated USNO NOMAD source

• statistics based features, count of n-day aliases 

• QSO statistics features, Eclipsing model based features

Random Forest & feature algorithms
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Example of an active-learned sample distribution.  

Active learning samples are yellow and blue.  

Original Hipparcos & OGLE training dataset3 are 

black and the ASAS testing dataset is red.

Repeat

During our active learning sessions it became apparent that several 

distinct red giant classes existed in the ASAS4 dataset but were not 

represented in the OGLE & Hipparcos training dataset3.  After 

defining new classes for OSARG-A, OSARG-B, and Long 

Secondary Period Pulsating Giants, the active learning process 

resulted in a classifier that could discern these types of science 

from the originally known & trained giant classes: Mira and 

Semiregular Pulsating Variables.
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Our classifier’s agreement with 

the ACVS labels, as a function 

of active learning iteration.

Percentage of ASAS data with 

confident (prob > 0.5) classifications, as 

a function of active learning iteration.
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10-fold cross validated confusion matrix showing our current classifier’s efficiency.

This classifier was generated after 9 iterations of active learning with the ASAS 

dataset, and is applied to the original 1542 source OGLE & Hipparcos dataset.

The cross validated error rate is 16.8%.
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