
Python bindings for the Common Pipeline Library

Interactive use

Ole Streicher¹, Peter M. Weilbacher¹

1 Leibniz-Institut für Astrophysik Potsdam (AIP), Germany

Introduction

The Common Pipeline Library (CPL) is a set of routines written
by ESO to provide a standard interface for the VLT instrument
data reduction pipelines.

Traditionally, VLT data reduction modules („recipes“) are execu-
ted via the command line tool EsoRex or a graphical user inter-
face like Reflex.

Python-cpl allows to seamlessly embed VLT recipes into a stan-
dard Python environment, enabling comfortable interactive use
(via IPython) as well as complex scripts.

CPL recipes are modelled as callable python objects, which allow
access to their metadata and online documentation.

ADASS XXI Conference, Paris, November 6-10, 2011

Automated processing

Python-cpl implements a number of features specific for batch
processing:

● Standard Python logging

The CPL messages are inserted into the Python log system,
enabling a flexible log processing (output targets and formats,
filters etc.).

● Access to recipe metadata

All available metadata (available parameters, required input
and calibration frames etc.) are available in Python, allowing
the implementation of a generic processing tool.

● Access to specific pipeline versions

If different pipeline versions are available, a specific version
may be selected for the recipe creation.

Applications

Python-cpl is currently used in the MUSE consortium for the
implementation of the MuseWISE data management system
(see poster P117). Other uses include laboratory measurement
processing and pipeline development.

A simple command line tool to run CPL recipes is provided in the
package.

Acknowledgement

We acknowledge support by the German Verbundforschung
through the MUSE/D3Dnet project (grant 05A11BA2).

Further information and contact

http://www.aip.de/~oles/python­cpl

Ole Streicher <ole@aip.de>

Here, a simple IPython (PyLab) session is shown that
generates a master bias using 5 raw bias files and a bad pixel
table, and displays it in a plot:

import pyfits, cpl

badpixtbl = pyfits.open('/d/muse_badpix.fits')
Use only the first 100 entries here:
badpixtbl[1].data = badpixtbl[1].data[:100]

bias = cpl.Recipe('muse_bias')
bias.param.nifu = 1
bias.calib.BADPIX_TABLE = badpixtbl

res = bias(('BIAS%2i.fits' % i) for i in range(5))
Show the resulting master BIAS in a plot
matplotlib.pyplot.figimage(res.MASTER_BIAS[1].data)

cpl.result.RecipeCrash: Recipe Traceback
 File "[...]/CPL_recipe.c", line 953, in CPL_exec()
 File "[...]/sky.c", line 579, in sky_compute()
 muse_img *whitelight = to_whitelight(pixtable);
 File "[...]/resmpl.c", line 2846, in to_image()
 img = cpl_imagelist_collapse_create(cube);
SIGSEV: Segmentation Fault

The main properties for interactive use are:

● Seamless integration of pyfits

Input and calibration frames may be given as file names or
as pyfits.HDUList objects. As shown in the example
above, pyfits.HDUList objects may be changed before
they are used in the recipe. By default, pyfits.HDUList
object are returned as results of the recipe.

● Recipe parameters and frame tags

Parameters and calibration frame tags are modelled as
normal Python attributes and can be accessed via IPython's
tab completition feature.

● Recipe specific online help
The recipe documentation is available as __doc__
attributes and can be accessed with the '?' feature of
IPython.

● EsoRex support

The initialization files of EsoRex can be used to initialize
python-cpl. Also, SOF files can be read or written

● Easy access to recipe parameters of result frames

The recipe parameters, input frames and calibration frames
can be retrieved from existing frames and re-used for new
computations.

● Simple parallel processing

Recipes can be executed in background, allowing a simple
parallelization of similar tasks. Different processes will
usually run in different working directories and do not
interfere with each other. Access to a result of a
background process automatically waits for the finalization
of the recipe.

● Detailed recipe stacktrace

Recipe crashes because of segmentation faults or similar
are converted into a Python exception without
compromising the stability of the Python environment. The
stack trace contains the recipe C source code, if available:

	Python bindings for the Common Pipeline Library

