
1. Express parallelism with ||
 for(Obs o : observations) ...

Becomes
 || (Obs o : observations) ...

► Computation now uses all available cores.

2. Express distribution to GPU with # annotations
 || (#OpenCL(), Obs o : observs)

 // these branches run on GPU

 || (...)

 // these branches run on CPU

► Mix of multicore and GPU computation

3. Express communication with message passing
 Channel c = ...;

 [

 || c ! value;

 || c ? value;

]

► Overlap of computation and communication

4. Map the GPU memory hierarchy to lexical scope

Benchmarks:

Lessons learned:

• Parallelism easy to introduce in the code

• No disruption in the Java devt. process
• Pretty good speed-up on multi-cores

• Similar perf. figures for GPU and 16-core GPU
• But depend heavily on the hardware
• Still a lot of room for improvement

• Code needs refactoring for performance on GPU,
such as loop pipelining and workgroup sizing

• Even though we code in Java, detailed
knowledge of GPU architecture is required

• Performance / price ratio on multi-core vs. CPU
• Not decisive
• But hardware is evolving rapidly

Contacts: mathias.beck@unige.ch, patrick.viry@ateji.com
Downloads & Documentation: www.ateji.com/px

Running Java on GPUs

An ESA Innovation Triangle Initiative with:
• ESA’s Gaia mission
• Observatoire de Genève
• Ateji

All Gaia code is in Java
Introducing OpenCL or CUDA in the development process would be a huge disruption

Ateji PX embeds parallelism in Java
Multi-core parallelism already available, GPU target developed during this project

→Port compute-intensive period search algorithms to the GPU
Deeming, Lomb-Scargle, String-Length

How it works:
• Source-to-source translation from fragments of Java to OpenCL
• Computation locality and communications expressed with Ateji PX extensions

mailto:mathias.beck@unige.ch
mailto:patrick.viry@ateji.com
http://www.ateji.com/px

