of the lateral load cells will follow, and we should be able to have full information on the support forces by the end of August this year. Time will be requested before the end of the year to change the force distribution below and around the mirror, and to install springs on the axial astatic levers.

A detailed planning of the intervention on the primary mirror support has been prepared by Roland Gredel. We hope that all the necessary work on the mirror cell can be done within the year.

4. Conclusions

The behaviour of the telescope at large zenith distance in terms of optical quality has been investigated carefully since September last year. Improvement plans have been proposed and work has started already. The phase we are entering now is very delicate as it involves the intervention on the mirror support itself. Everything will be done not to degrade the optical quality at zenith while changes are made. More technical time will be needed before the end of the year to decrease the aberrations for all telescope positions. The 3.6-m is getting better; however, much work still has to be done.

Figure 2.

References


Stephane Guisard
e-mail: sguisard@eso.org

From the 3.6-m and 2.2-m Teams

During October 1997, EFOSC2, the imaging spectrograph now at the 2.2-m telescope, will be moved from the 2.2-m to the 3.6-m. The current spectrograph on the 3.6-m, EFOSC1, will be de-commissioned. EFOSC2 on the 3.6-m will have higher throughput, a larger field of view and significantly better image quality than what was possible with EFOSC1. The significantly smaller pixel scale of the EFOSC2 CCD, 0.18 arcsec per pixel at the 3.6-m telescope, compared to 0.61 arcsecond per pixel of EFOSC1, will allow observers to fully exploit the recent progress in the improvement of the 3.6-m image quality (see S. Guisard’s reports in The Messenger, December 1996, March 1997). Multi-object spectroscopy will not be available with EFOSC2 during Period 60 but only in Period 61 and thereafter.

For ESO time during period 60, the 2.2-m will be dedicated to observations with the two infrared cameras, IRAC1 and IRAC2b.

2.2-m Telescope Upgrade Plan

With the 3.6-m upgrade in progress, the 2.2-m telescope will be the only major telescope on La Silla which still runs off an HP-1000 computer. To make sure that the 2.2-m telescope will be maintainable into the next decade, we are preparing an upgrade plan for the telescope which will be presented to the STC in the beginning of May. The upgrade plan will discuss both the possible replacement of much of the electronics and computers as well as possible modifications to the drive system and possible improvements of the image quality. This will be a good opportunity to address some long-standing problems with this otherwise excellent telescope.

J. Storm

News from the Danish 1.54-m Telescope

J. BREWER and J. STORM

TCS User Interface Upgrade

A new TCS graphical user interface (GUI), written by Gaetano Andreoni using the VLT panel editor, is now in use at the Danish 1.54-m telescope. Observers will find that the frequently used telescope and adapter controls are now contained within a single window, while lesser-used functions are within a dismissable pop-up window. A 'virtual handset' can also be enabled from the main control window. The new interface retains the same functionality as the old interface, though it is simpler and more user friendly. The new interface also offers the advantages that it is significantly more robust than the old system and is easily modifiable.

DAISY

A new instrument GUI, based on the GUI at the Dutch telescope, is now in use at the Danish 1.54-m telescope. DAISY (Data Acquisition Integrated SYstem), written by Eduardo Robledo, combines the control of the CCD Camera, the DFOSC (Danish Faint Object Spectroscopic Camera), the FASU (Filter And Shutter Unit), and the telescope focus control all into one package. Observers will find that DAISY is very easy to use; the operation is intuitive and there is little to remember. The DAISY