Preliminary reductions of the WFI data have been made, but a powerful computer was still missing at that time. Remember that a full frame is 300 Mb!

Here are the different reduction stages adopted:
- Bias subtraction and FF division
- Cosmic-event removing
- Combine the 5 images per filter (not yet done)
- Frame centring (Continuum as reference)
- Flux calibration
- Continuum frame substraction
- [(OIII)-Continuum] divided by (Hα-Continuum)
- Accurate astrometry using the ESO Starcat package facility (not yet done)

5. Results

These observations demonstrate that, as expected, we still can find a lot of new emission-line objects. Moreover, these observations provide, in the survey area, an unbiased and complete survey (range greater than 8 magnitudes).

As a first product this study, preliminary to further spectroscopic study, will lead to the publication of a catalogue with precise coordinates and good finding charts of more than 1000 emission objects (PNe, HII regions, SNR, Hα-emission objects). Moreover, these observations provide, in the survey area, a brigthest (3000 10^{-16} erg.cm^{-2}.s^{-1}) or the faintest (~ 200 10^{-16} erg.cm^{-2}.s^{-1}) PNe already known.

Figures 1 to 4 show the finding charts in both Hα and [OIII] filters.

5.1. Expected PNe number in the LMC

In 1978 Sanduleak et al. have estimated the total PNe number to 400 in the LMC (and 100 in the SMC accordingly to the LMC/SMC mass ratio equal to 4). In 1980 Jacoby determined these numbers to be 956 and 285, respectively.

The current number of known PNe in the Magellanic Clouds are respectively 282 and ~ 85 for the LMC and the SMC.

This study demonstrates that many PNe have been missed by the previous surveys and that probably a few hundred can be discovered with the current instrumentation.

In the studied area we double the known sample of PNe, therefore, we can extrapolate to find more than 250 new PNe in the LMC. Statistically, we can at least expect to find about 50–100 new faint and extended PNe in the Bar. These PNe are of particular interest because they are old, allowing to determine galaxy abundances at epoch up to 10 billions years.

6. Conclusion

The WFI has proved with this study that it is an excellent efficient instrument which can be used to survey large areas (like nearby galaxies) and still discover many faint interesting objects.

We hope that we will soon be able to cover several other square degree and determine an accurate PNe luminosity functions over this complete and unbiased sample.

The next step, with such faint objects, will be a follow-up with VLT telescopes (FORS) to obtain very good S/N spectra and derive accurate abundances.

References
ESO, the European Southern Observatory, was created in 1962 to “… establish and operate an astronomical observatory in the southern hemisphere, equipped with powerful instruments, with the aim of furthering and organising collaboration in astronomy …” It is supported by eight countries: Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. ESO operates at two sites. It operates the La Silla observatory in the Atacama desert, 600 km north of Santiago de Chile, at 2,400 m altitude, several optical telescopes with diameters up to 3.6 m and a 15-m submillimetre radio telescope (SEST) are now in operation. In addition, ESO is in the process of building the Very Large Telescope (VLT) on Paranal, a 2,600 m high mountain approximately 130 km south of Antofagasta, in the driest part of the Atacama desert. The VLT consists of four 8.2-metre and three 1.8-metre telescopes. These telescopes can also be used in combination as a giant interferometer (VLTI). The first 8.2-metre telescope (called ANTU) started regular scientific operations in April 1999 and also the second one (KUEYEN) has already delivered pictures of excellent quality. Over 1200 proposals are made each year for the use of the ESO telescopes. The ESO Headquarters are located in Garching, near Munich, Germany. This is the scientific, technical and administrative centre of ESO where technical development programmes are carried out, with the most advanced instruments. There are also extensive astronomical data facilities. In Europe ESO employs about 200 international staff members, Fellows and Associates, in Chile about 70 and, in addition, about 130 local staff members.

Local Staff (Chile)
(Until 30th September 1999)

ARRIVALS

NAVARRETE, Julio, Telescope Instrument Operator, Paranal (transferred from La Silla)
CARRASO, Cecilia, Personnel Assistant, Santiago
ZAPATA, Joel, Warehouse Administrative Assistant, Paranal
CARVAJAL, Marta, Administrative Secretary

DEPARTURES

MUÑOZ, Nelson, Electrónico, La Silla
PARADÁ, María, Recepcionista, Santiago
VILLANUEVA, Raúl, Ingeniero Civil, Paranal

List of Scientific Preprints
(July–September 1999)

1337. F. Comerón and J. Torra: A Near Infrared Study of the HII/Photodissociation Region DR 18 in Cygnus. A&A.

Contents

TELESCOPES AND INSTRUMENTATION

M. Tarenghi: News from the VLT ... 1
E. Ettlinger, P. Giordano, and M. Schreiermann: Performance of the VLT Mirror Coating Unit .. 4
M. Sarazin and J. Navarrete: Climate Variability and Ground-Based Astronomy: The VLT Site Fights Against La Niña ... 8
M. Ferrari and F. Derie: Variable Curvature Mirrors .. 11
F. Derie, E. Brunetto, and M. Ferrari: The VLTI Test Siderostats Are Ready for First Light ... 12
J.C. Christou, D. Bonaccini, N. Ageorges, and F. Marchis: Myopic Deconvolution of Adaptive Optics Images .. 14
Latest News: “First Light” for VLT High-Resolution Spectrograph UVES .. 22
Erratum .. 23

THE LA SILLA NEWS PAGE

O. Hainaut and the NTT Team: News from the NTT .. 24
M. Sterzik, U. Weilenmann and the 3.6-m Upgrade Team: 3.6-m Telescope Control System Upgrade Completed .. 25

REPORTS FROM OBSERVERS

P. Leisy, P. Francois, and P. Fouqué: Emission-Line Object Survey in the LMC with the WFI: New Faint Planetary Nebulae .. 29

ANNOUNCEMENTS

Personnel Movements .. 31
List of Scientific Preprints .. 32