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Overview
ALMA software, from high-level dataflow applications down to
instrument control, is built using the ACS framework.

ACS offers a CORBA-based container/component model and
supports the exchange and persistence of XML data.

For the Java programming language, the container integrates
transparently the use of type-safe Java binding classes to let
applications conveniently work with XML transfer objects
without having to parse or serialize them.

These transfer objects are used to pass by value complex data
structures, such as observation meta-data, between
heterogeneous applications.

XML Data By Value

XML good for inter-process communication and persistence
Simple validation through declarations in XML schema
Text editor can mimic an application during development

Grouping of data nodes into several schemas. Referencing:
within a schema: as a child element
across schemas: by ID (soft reference)
IDs generated by the archive to ensure system-wide
uniqueness; container serves as ID cache
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Fine-grained remote calls degrade performance
more runtime coupling among computers

Remote
Object

XML Binding
Java code generated from the XML schemas as part of the
software build process
Type-safe get()/set() methods ensure that version conflicts be
caught at compile time
Binding classes contain code

for de-/serialization from and to XML
to enforce schema constraints (validation)

More safety and convenience than with any other XML parsing
technique such as DOM, SAX

Generated Java packages,
classes and methods as seen in
the Eclipse IDE
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Transparent Serialization
Functional component interfaces are defined in CORBA IDL.
XML entities (the transfer objects) are referenced as typedef’d
XmlEntityStructs (inside: XML as a string + ID, version,...).

The two interfaces (“flat” / “transparent” XML) are connected
through mapping layers that the container creates dynamically
using Java reflection (java.lang.reflect.Proxy).

If both components are collocated, the container can shortcut
XML serialization and CORBA communication.
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A standard IDL compiler generates Java interfaces that contain
XML as a string (“flat”); the custom ACS IDL compiler generates
corresponding interfaces that contain the XML binding classes
(“transparent” XML).

The Java container performs the necessary translations (XML
de-/serialization) at runtime. Components only work with binding
classes, although standard XML is seen from the outside.
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To create Java binding classes from XML schemas, we
currently use the free Castor framework.

SUN’s JAXB specification is not powerful enough (can only
deal with schema-valid XML, thus preventing building up the
data spread over components or time).
XMLBeans look like a promising alternative.

Binding classes encapsulate data, but lack custom behavior.
We either keep functional methods outside (anti-OO) or wrap
the relevant binding classes with a “business class” that
delegates data access to the underlying binding class.

Hopefully mature binding frameworks for C++ and Python will
become available.

ALMA Usage Examples
The ObsPrep tool creates deeply nested XML documents for
Observation Proposals, Projects, SchedBlocks, using XML
binding classes.

These entities are stored in the archive which has a generic
interface and therefore does not work with type-safe binding
classes.

The Scheduling subsystem retrieves SchedBlocks from the
archive and ranks them based on their data, again using
Java binding classes.

Correlator configuration is handled as an XML document,
produced by the ObsPrep subsystem, and read by the
Correlator subsystem.


