
Details on Components and CORBA

Transparent XML Binding using the
ALMA Common Software (ACS)

Container/Component Framework
Heiko Sommer (ESO), Gianluca Chiozzi (ESO)

David Fugate (NRAO), Matej Sekoranja (Cosylab)

ADASS XIII
Atacama
Large
Millimeter
Array

Overview
ALMA software, from high-level dataflow applications down to
instrument control, is built using the ACS framework.

ACS offers a CORBA-based container/component model and
supports the exchange and persistence of XML data.

For the Java programming language, the container integrates
transparently the use of type-safe Java binding classes to let
applications conveniently work with XML transfer objects
without having to parse or serialize them.

These transfer objects are used to pass by value complex data
structures, such as observation meta-data, between
heterogeneous applications.

XML Data By Value

XML good for inter-process communication and persistence
Simple validation through declarations in XML schema
Text editor can mimic an application during development

Grouping of data nodes into several schemas. Referencing:
within a schema: as a child element
across schemas: by ID (soft reference)
IDs generated by the archive to ensure system-wide
uniqueness; container serves as ID cache

a1
a4

a2

XML Doc 1
schema A imports schema B

XML Doc 2
schema B

b1

a3

b3

b2

ref_b1 reference
by ID

a1
a4

a2

XML Doc 1
schema A imports schema B

XML Doc 2
schema B

b1

a3

b3

b2

ref_b1 reference
by ID

Subsystem2
Logik

obj.getFoo()

Subsystem1

obj.getFoo()

transport
by value

Subsystem2
Logik

obj.getFoo()

Subsystem2
Logic

obj.getFoo()

Subsystem1

obj.getFoo()

transport
by value

Transfer
Object

Fine-grained remote calls degrade performance
more runtime coupling among computers

Remote
Object

XML Binding
Java code generated from the XML schemas as part of the
software build process
Type-safe get()/set() methods ensure that version conflicts be
caught at compile time
Binding classes contain code

for de-/serialization from and to XML
to enforce schema constraints (validation)

More safety and convenience than with any other XML parsing
technique such as DOM, SAX

Generated Java packages,
classes and methods as seen in
the Eclipse IDE

container

C
om

p

container

C
om

p

XML

C
om

p

Flat-XML API seen 
from outside:

XmlEntityStruct

Transparent-XML 
API implemented 
by component:
SchedBlock

De-/Serialization
layer (dynamic)

XML

containercontainer

C
om

p
C

om
p

containercontainercontainer

C
om

p
C

om
p

XMLXML

C
om

p

Flat-XML API seen 
from outside:

XmlEntityStruct

Transparent-XML 
API implemented 
by component:
SchedBlock

De-/Serialization
layer (dynamic)

XMLXML

Transparent Serialization
Functional component interfaces are defined in CORBA IDL.
XML entities (the transfer objects) are referenced as typedef’d
XmlEntityStructs (inside: XML as a string + ID, version,...).

The two interfaces (“flat” / “transparent” XML) are connected
through mapping layers that the container creates dynamically
using Java reflection (java.lang.reflect.Proxy).

If both components are collocated, the container can shortcut
XML serialization and CORBA communication.

ACS IDL
compiler

Makefile mapping info:
“ObsProject” -> 

alma.data.ObsProject

Transparent-XML 
“MyInterfaceJ”

alma.data.ObsProject
getObsProject()

CORBA IDL 
compilertypedef xmlstring

ObsProject; 
…

ObsProject
getObsProject()

IDL IF

Flat-XML “MyInterface”

XmlEntityStruct
getObsProject()

together in one JAR file

ACS IDL
compiler

Makefile mapping info:
“ObsProject” -> 

alma.data.ObsProject

Transparent-XML 
“MyInterfaceJ”

alma.data.ObsProject
getObsProject()

CORBA IDL 
compilertypedef xmlstring

ObsProject; 
…

ObsProject
getObsProject()

IDL IF

Flat-XML “MyInterface”

XmlEntityStruct
getObsProject()

together in one JAR file

SchedBlock
XML documentClient component Server component

“SchedBlock.xsd”

<xsd:element
name=“SchedBlock”>

meta level

instance level

typedef XmlEntityStruct
SchedBlock;

void
takeSchedBlock(
SchedBlock sb
)

Complex data type 
defined as XML schema

im
plem

ents

Operation defined
in CORBA IDL

ref
1..n 0..1

SchedBlock
XML documentClient component Server component

“SchedBlock.xsd”

<xsd:element
name=“SchedBlock”>

meta level

instance level

meta level

instance level

typedef XmlEntityStruct
SchedBlock;

void
takeSchedBlock(
SchedBlock sb
)

Complex data type 
defined as XML schema

im
plem

ents

Operation defined
in CORBA IDL

ref
1..n 0..11..n 0..1

A standard IDL compiler generates Java interfaces that contain
XML as a string (“flat”); the custom ACS IDL compiler generates
corresponding interfaces that contain the XML binding classes
(“transparent” XML).

The Java container performs the necessary translations (XML
de-/serialization) at runtime. Components only work with binding
classes, although standard XML is seen from the outside.

client container server container

uses XML
binding
classes

uses XML
as strings

Operations IF
(Flat-XML)

Skeleton (Tie)Stub

SkeletonImpl
(mapping)

impl

Transparent-
XML IF

Server 
Component

delegatesimpl

Proxy
(mapping)

delegates

Client 
Component

calls

CORBA remoting

impl.

XML

impl

delegatesDetails on XML Binding
To create Java binding classes from XML schemas, we
currently use the free Castor framework.

SUN’s JAXB specification is not powerful enough (can only
deal with schema-valid XML, thus preventing building up the
data spread over components or time).
XMLBeans look like a promising alternative.

Binding classes encapsulate data, but lack custom behavior.
We either keep functional methods outside (anti-OO) or wrap
the relevant binding classes with a “business class” that
delegates data access to the underlying binding class.

Hopefully mature binding frameworks for C++ and Python will
become available.

ALMA Usage Examples
The ObsPrep tool creates deeply nested XML documents for
Observation Proposals, Projects, SchedBlocks, using XML
binding classes.

These entities are stored in the archive which has a generic
interface and therefore does not work with type-safe binding
classes.

The Scheduling subsystem retrieves SchedBlocks from the
archive and ranks them based on their data, again using
Java binding classes.

Correlator configuration is handled as an XML document,
produced by the ObsPrep subsystem, and read by the
Correlator subsystem.


