EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans 1'Hémisphére Austral

Europdische Organisation fiir astronomische Forschung in der siidlichen Hemisphére

ALMA PROJECT

ATACAMA LARGE MILLIMETER
ARRAY

SE Practices
Software Development Process
Methodology and Tools

Doc. No.: ALMA-PRO-ESO-xxxxX-XXXX
Issue: 1.0

Date: 2000-07-28

Prepared: G.Chiozzi, R.Karban, P.Sivera

Name Date Signature

ALMA PROJECT * TELEPHONE: (089) 3 20 06-0 * FAX: (089) 3 20 06 514

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 3 0f 83
CHANGE RECORD
ISSUE DATE SECTION/PAGE REASON/INITIATION
AFFECTED DOCUMENTS/REMARKS
1.0 2000-07-29 First issue

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 50f 83
TABLE OF CONTENT

1 Introduction 7
1.1 Purpose 7
1.2 Scope 7
1.3 Acknowledgements 8
1.4 Reference Documents 8
1.5 Acronyms 8
1.6 Glossary 9

2 Overview 11
2.1 Methodology corner stones - “One Document” objective 11
2.2 Software for science versus commercial application software 13
2.3 Based on the experience 14

3 Software Process Overview 15
3.1 Process key aspects 15
3.1.1 Use Case driven process 15
3.1.2 Architecture Centric Process 15
3.1.3 Iterative and incremental process 16

3.2 Project life cycle 16
3.3 Project milestones 18
First Iteration of Inception: from Kickoff meeting to Software Requirements Review 19
Inception leads to Preliminary Design Review 21
Elaboration leads to Final Design Review 28
Construction leads to System Delivery 32
Transition leads to Final Acceptance Test 34
3.9 Use Cases 37
39.1 WHAT and HOW 37
3.9.2 Use Case Diagrams 37
3.9.3 Use Cases: scope and target readers 39

4 Reference 40
4.1 Setup of the working environment 40
4.2 Module template 41

e Online Documentation 43

e Printable documents - Official releases 43

e Printable documents - Current development 43

4.3 Organizing the project 45
4.4 Working within the module 45
4.4.1 Working with Rational Rose 45
4.4.2 Creating printable documents: Web Publisher 47
4.43 Generate diagrams in EMF and GIF format from the Rose Model 47
4.44 How to use and maintain the script XP2IMG:.tcl 48
4.4.5 Generate filtered files for DD and SRS documentation 49
4.4.6 Working with word 50
4.47 Checking the web consistency 50

4.5 To be done 50
4.6 Troubleshooting: surviving MS-Word 51
5 APPENDIX A: Use Case template 52

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 6 of 83

5.1 The Use Case template 52
5.2 Requirement and Design view: how to create them 57

6 APPENDIX B: Use Case examples 59
6.1 Use Case: ATCS Start 59
6.2 Use Case: Telescope Offset 61
6.3 Use Case: Set Nasmyth Wheel 62

7 APPENDIX C: Interface Control Document example 65
7.1.1 Nasmyth wheel 65

8 APPENDIX D: Package template 68
8.1 Package: XXX 68

9 APPENDIX E: Package description 71
9.1 Package: Nasmyth Focus Device 71
10 APPENDIX F - Checklists 79

11 APPENDIX G - Frequently asked Questions 81

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 7 of 83

1 Introduction

1.1 Purpose

This document intends:

— to provide a methodology, based on the Unified Software Development Process(UP)[3], for the
analysis, design and implementation of a project;

— to provide guidelines in the use of the Unified Modelling Language[2] to specify, construct and
document the artefacts of the project;

— to identify the set of tools to be used.

The process has been applied at ESO in a pilot project for the Auxiliary TelescopesThe ATCS Online
Documentation[8] is available to verify the examples (most of them are drawn from the ATCS project)
and to access glossary and help information.

The UP is intended to be modified to fit a project. The development process defined here addresses
these modification and extensions with respect to the ALMA project. Project management needs to
place milestones on the development process.

Finally, this is not a project plan. This is a process to design the software and is part of the project plan.

1.2 Scope

This document describes the Software Development Process of the ALMA project, to be applied to
Phase 1. It is intended to be reviewed in some months, before deciding on its applicability to Phase 2.

In the current implementation, several activities have to be performed by hand or using tools that could
be largely improved. We apologize for that in advance, but due to the limited available resources
considering that it was more important to start to use the methodology than wait to have it perfect, we
decided to make it public in spite of the known limitations.

Project leaders who are in charge of defining the analysis and design of a project and SW developers
who have to take care, in a second stage, of the implementation of the project compose the intended
audience.

Knowledge of the basic concepts of the Unified SW Development Process (UP)[3] as well as Unified
Modelling Language (UML)[1][2] is required: we don’t intend to repeat what can be easily found in
the books reported in the reference section.

After the list of reference documents, list of acronyms and a short glossary, (everything is in Chapter
1), we describe the basic concepts and theories of the process (Chapter 2). This chapter explains the
interpretation of the Unified Software Development Process model, putting in evidence the corner
stones of the process.

Chapter 3 treats in detail the Unified Process and Use Cases concepts. Readers who are familiar with
the concepts could skip this chapter.

Chapter 4 is the reference part of the document, where the work process and the tools used are
described.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 8 of 83

1.3 Acknowledgements

This work is the result of many hours of discussions, trials and tests inside the group responsible for
the ESO ATCS projects (G.Chiozzi, R.Karban, P.Duhoux) and include contribution from G.Filippi and
B.Gilli.

Members of the ALMA collaboration have also provided significant input, in particular members of the
NRAO software group (G.Harris, F.Stauffer, M.Brooks, J.Pisano and R.Heald)

1.4 Reference Documents

The following papers, books and publications contain additional information and are referenced in the
text:

[1] The Unified Modeling Language User Guide - G.Booch, J.Rumbaugh, I.Jacobson - 1998,
Addison Wesley Pub Co; ISBN: 0201571684

[2] The Unified Modeling Language Reference Manual - J.Rumbaugh, I.Jacobson, G.Booch -
1998, Addison Wesley Pub Co; ISBN: 020130998X

[3] The Unified Software Development Process - [.Jacobson, G.Booch, J.Rumbaugh - 1998,
Addison Wesley Pub Co; ISBN: 0201571692

[4] Writing Effective Use Cases and Introducing Collaboration Cases - L.Mattingly H.Rao -
JOOP, Oct '98

[5] Structuring Use Cases with Goals - A.Cockburn JOOP, Sep-Oct '97 and Nov-Dec '97

[6] Applying Use Cases : A Practical Guide - G. Schneider, J.P.Winters, [.Jacobson - 1998,
Addison-Wesley Pub Co; ISBN: 0201309815

VLT Project Software documents are available from the ESO VLT Project Archive or online at the
following URL.:

http://www.eso.org/projects/vit/sw-dev/ftp/index.html

[71 VLT-TRE-15151-1917 - Technical Report on Analysis and Design with UML for the Auxiliary
Telescope Control System

[8] ATCS Online Documentation
It is available at the following URL.:
http://www.eso.org/~gchiozzi/ATS/atcsdoc
UID: atcsdoc PWD: (ask G.Chiozzi for the PWD and write it here)

Other readings on the subjects like the ATCS Technical Report[7] can be found here:

[9] Suggested readings from the ESO VLT Object Oriented Working Group:
http://www.eso.org/projects/vit/sw-dev/oowg-forum/readings.html

[10] Making a List and Checking It Twice - J.D.McGregor - JOOP June 2000

1.5 Acronyms

All the acronyms used in the ATCS project are available in the abbreviations' section that is part of the
online documentation [8].

Here we just provide some basic acronyms used in this document.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 9 of 83
ALMA Atacama Large Millimeter Array
AT Auxiliary Telescope
ATCS Auxiliary Telescope Control Software
ATS Auxiliary Telescope System
ESO European Southern Observatory
HTML HyperText Markup Language
HW Hardware
ICD Interface Control Document
NRAO National Radio Astronomy Observatory
PWD PassWorD
SE Software Engineering
SW Software
UID User IDentification
UML Unified Modelling Language
UP Unified (Software Development) Process
URL Universal Resource Locator
VLT Very Large Telescope
WWWwW World Wide Web

1.6 Glossary

A complete glossary of all the terms used in the UML language and in the Unified Software
development process is given in the two reference books [1][2] and [3].

All the definitions used in the ATCS project are available in the glossary that is part of the online
documentation [8].

Here we just provide some basic definitions, extracted from these referenced documents.

Actor
An Actor is a role of an entity external to the system. Actors can be humans, machines, or devices.
"One physical object can play several roles and therefore be modeled by several Actors".
A primary Actor is one having a goal requiring the assistance of the system.
A secondary Actor is one from which the system needs assistance to satisfy its goal.

Phase
The span of time between two major milestones of a development process

Stakeholders
Stakeholders are the funding authorities. They typically include users, salespeople, project
managers, line managers, production people, regulatory agencies, and so on.

Use Case
The specification of sequences of actions, including variants sequences and error sequences, that a
system, subsystem or class performs that yields an observable result of value to a particular Actor.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 10 of 83

Workflow

A realization of (a part of) a business Use Case. Can be described in terms of activity diagrams that
include participating workers, the activities they perform, and the artifacts they produce.

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 11 of 83

2 Overview

2.1

Methodology corner stones - “One Document” objective

The Software Development Process is built on the following corner stones (most of them are taken up
in detail in chapter 3):

The Unified SW Development Process|[3].

The Unified SW Development Process is nowadays well established and is the result of the joint
work of three among the most recognized experts in the field. It is the starting point for the
described methodology, in the sense that it has been tested, tried out and finally adapted to the
specific context of the project.

The Use Cases (see section 3.9).

Use Cases are a fundamental part of the process, since they allow collecting requirements in a clear
and at the same time light way. The requirements are expressed at a sufficient level of formality
that makes them traceable throughout the whole process up to the final acceptance testing. They
build the common language of SW engineers and system customers.

Since it is very important to have a common starting point and a common language, for
communication between different groups or even different people in the same group, a common
Use Case template has been compiled. The template is based on the excellent papers of
L.Mattingly[4] and A.Cockburn[5] and on the book entirely dedicated to Use Cases of
G.Schneider[6].

The template is available in Appendix A, Chapter 5. It’s recommended keeping the template at
hand whenever you want to write a use case.

The defined Use Case model allows two levels of access to the Use Cases introducing a design
view identified by the & symbol. This view contains details that are pertinent only to design and can
be skipped to obtain the requirements view, that contains information relevant at requirements
specification level. The requirements view represents the contract with the customers of the
system, whereas the design view adds - transparently for the customer -information only relevant
for the architecture and design of the system.

It is possible at any time to print all Use Cases containing only Requirements information, (an
automatic script is provided to strip the design information from a file) marking what is changed
with respect to the previous version of the document: this makes it easy to identify the changes in
requirements that have to be discussed with the stakeholders.

At the same time, team members editing Use Cases can easily see which modifications are just an
elaboration and new details and which actually have an impact on requirements.

Summarizing:

e One single Use Case source, two views

e Requirements information is the core

e Design information is added and marked as such using the & symbol'.

The Unified Modeling Language (UML)[1]]2].
The need for a uniform and consistent visual language to express the results of analysis, design and
implementation is very strong. The UML is now a well-established standard, widely used and the

! Some html instructions have been defined to create the array symbol. These instructions are supplied with the

Use Case Template (see Appendix A). Whenever you want to mark a passage in the text as “design view” you can

cut&paste these instructions.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 12 of 83

selected diagramming language for the process.

The WWW: online, hypertext documentation.
The WWW is the media that provides the features that allows to meet the "One Document"
Objective, i.e. to arrive at the point where:

e All the relevant documentation of the project is kept in one single document
¢ No information has to be duplicated, but it can be simply cross-referenced wherever needed.
e The latest version of the whole documentation is always available for immediate access

e Changes can be easily done, but everything is, at the same time, kept under configuration
control

e Requirement and design documents and the actual implementation code are seamlessly
integrated. It is possible to navigate from one to the other and back.

However, online documentation alone is not enough.

Printed documents are essential not only for reviewers, but also for members of the development

team.

As a general rule, everything has to be done in HTML format and the starting point is always the

HTML documentation. Here, the information is kept as atomic as possible. The elementary

information units can then be used as building blocks and inserted and reused in very different

documents.

Here are some guidelines:

e Each Use Case is kept as a separate HTML file and contains hyperlinks to other Use Cases,
help pages or other documents and files.

e All HTML files are inserted in the printable documents, gluing them with the proper
descriptive text and fitting them in the printable document architecture.

e Whenever a Use Case is modified in the online documentation, we supply some automatic
procedures that take care of updating the printable documents, often processing the file, for
example to strip design information when it has to be used in requirements document (see
chapter 4).

In this way, a document aligned with the current development can be printed.
The configuration control assures that changes to the whole documentation are kept under control
and it is always possible to identify what has changed and, if necessary, to rollback.

Standard milestones and deliverables.

It is necessary to stick to standard project milestones that fit in current working environments and
are widely accepted. The following table shows the milestones associated with the process phases:

Phase Project Milestone Unified Process Milestone
Inception (first) Software Requirements Review | -----

Inception Preliminary Design Review Life Cycle Objectives
Elaboration Final Design Review Life Cycle Architecture
Construction System Delivery Initial Operation Capability
Transition Final Acceptance Test Product Release

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 13 of 83

The second column shows the milestones defined at ESO level for a project. These milestones are
based on IEEE standards, adopted for the former VLT Software Life Cycle.

The third column contains the milestones defined in the Unified Software Development Process[3].
Comparing the scope and meaning of the milestones in the IEEE definition and in the Unified
Process it can be concluded that they map very well.

Since the IEEE names are used by other technical groups (e.g. mechanics and electronics)
within the organization and are widely used with external contractors these names are kept.
At each milestone, printed documents are released, reviewed and archived for reference.

e Standard procedures.

The work is organized in a software module kept under configuration control to guarantee
information consistency. A module template that provides the right directory structure and a certain
number of files to be edited is available. Some procedures to help the users in maintaining the
software (documents and Rose model) are supplied. In Chapter 4 you can find a detailed description
of the work steps.

2.2 Software for science versus commercial application software

Since our environment deals with the development of control software for scientific experiments, this
type of project is very different from other software projects and in particular from commercial
application software.

Most of the books available on the market on software development focus on commercial applications,
since they cover a larger fraction of the software development market. The concepts described in those
books have to be accurately evaluated considering the specifics of our type of project. Few interesting
books deal specifically with the development of Real Time Control Systems and are listed in [9].

Here are some important aspects to keep in mind:

e A scientific experiment is always at the edge of knowledge and technology. As a consequence,
requirements are often unclear and change during the course of the project.

e The software to be developed is highly linked to the hardware and to the electronics. This has
many implications. For example software deadlines actually depend and are affected by
hardware delivery dates. When the hardware is ready, software must also be ready. Planning is
always done a priori based on the hardware components.

e The system is unique. There will be just one or very few installations. We cannot count on
hundreds or thousands of beta testers to debug the software.

e When the system is eventually integrated, the control software is used also to validate
hardware and electronic performances. The software team responsible for the final integration
becomes automatically also responsible for the verification of the whole system. Sometimes it
is very difficult to see if a problem lies in the software or originates from the hardware or
electronics.

e Psychologically, the stakeholders of the system are naturally driven to think that hardware is
fixed, while software can be easily modified. For this reason, hardware requirements are
typically analyzed in great details, while software requirements are left unclear or modified
freely.

e Interfaces with the hardware and the electronics have a very big impact on the system and have
a big effort has to be spent in making them clear and stable.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 14 of 83

Nevertheless, this manual can be applied to other types of project (not necessarily a Control System
project!) adapting it to the different requirements another type of project could have.

2.3 Based on the experience

A lot of time has been dedicated in tuning the process and adapting it to our specific environment. The
results are very satisfactory and there has been very good feedback from people involved in other
aspects of the project.

There has been also a very good feedback from the stakeholders for what concerns the usage of the Use
Cases.

In particular:

e Use Cases are a very good way of capturing system requirements

e The process provides a good support for tracing requirements through all phases of the project

e With the support of good tools, it is very well suited for team work and collaborative
development

e The use of the World Wide Web as a documentation repository is very effective, but work is
required to provide also good printable documentation automatically extracted from the Web
documentation.

Open discussion and co-operation among team members have proven to be essential to build and keep
a "common vision". Tools for collaborative development help a lot in this respect. Tutoring is also very
important to train new team members or to introduce the process in a new project.

The next Chapter explains in greater depth the Unified Development Process, giving a detailed
description of each project milestone.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 15 of 83

3 Software Process Overview
A software development process describes all the activities that are necessary to transform user
requirements into a final software system. In particular it is used to organize, track, document and test

the project.

3.1 Process key aspects

The essential aspects of this process are captured, as the authors say, by the following three key-words:

Use-case erfven

3.1.1 Use Case driven process

Use Cases describe the external interactions and elaborate and identify the system functionality. The
set of all Use Cases makes up the Use Case model.

The main purpose of the Use Case model is to give an answer to the following question:
What is the system supposed to do for each user?

With respect to the traditional functional specification, this question focuses on the value each Use
Case has for a specific user. This is much more than just providing a list of functions that might be
good to have.

The whole development process follows a flow that origins from the Use Cases. At the same time, Use
Cases mature and evolve during the life cycle of the project.

3.1.2 Architecture Centric Process

The architecture of a software system identifies the most important static and dynamic aspects of the
system and provides a common vision that all developers and customers share.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 16 of 83

The framework of the architecture is based on the understanding of the key functions that the system
must be able to fulfil. These key functions are typically captured by 5% to 10% of all Use Cases. This
estimates gives an idea of the amount of Use Cases that have to be analyzed to identify the base
architecture of the system.

Through different views of the system being built, the architecture shows how the system will allow
the realization of all specified Use Cases. During the project life cycle, the design will add to the
architecture all details necessary for the actual implementation of the system.

The architecture will remain as the view of the high-level design stressing the important aspects while
leaving aside the details.

The architecture is the starting point to identify the /ayout of the system and a strong initial effort is
essential to get a final system that will work. It is also true, on the other hand, that the architecture will
evolve during the project life cycle as the Use Cases are elaborated in detail and mature.

All object-oriented literature emphasizes strongly the parallel between software projects and the
process of building houses. As in any comparison, there are some limitations to take into account, but
in general it is very helpful in clarifying the concepts expressed by object-oriented analysis and design
processes. All reference documents given in section 1.4 make extensive usage of this example.

3.1.3 Iterative and incremental process

The work necessary to build the final system is divided into smaller slices.

Finding the requirements, developing the use cases and selecting the most important use cases to be
developed first starts the process. This is the first increment. One or more iterations occur for each
phase and each phase uses the different design tasks.

The driving concept consists of the idea that every slice must be a mini-project in itself, which has well
defined goals and which can be measured and controlled.

Each mini-project is an iteration in the development, since it performs a complete workflow.

The purpose of each iteration is the realization of a set of Use Cases. These Use Cases are first
identified and specified. Then a design is created according to the chosen architecture for the whole
system. The development team implements the design and verifies that the system satisfies the Use
Cases.

If the iteration meets its goals, the system is released and the development proceeds with the next
iteration.

The iteration is also an increment since it provides a new set of functionality in the system.
The Use Cases to be implemented at each iteration are selected according to two criteria:

e The selected Use Cases must all together extend the functionality of the system developed so
far

e Each iteration must deal with the most important risk areas. Use Cases associated with higher
risks have higher priority.

3.2 Project life cycle

The Unified Process repeats over a series of cycles making up the life of the project.

Each cycle concludes with a major product release (like Microsoft Word, as a well known example
from the office world).

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 17 of 83

Each cycle consist of four phases, where Use Case play a key role:

Inception - This starts the definition task. Requirements are produced and analysis is started.
High level Use Cases are developed to identify what is in the scope of the project.

Elaboration - Requirements are refined, analysis completed, and the system designed. The
system design is detailed enough to give the programmers the modules to design and code.
More detailed Use Cases contribute to the baseline architecture and to the risk analysis. They
are also used to define the planning for the Construction Phase.

Construction - Programmers implement modules identified in the baseline design. Detailed
design is performed, software is coded, and unit tests are designed and performed. Integration
and system test plans should be created. Use Cases will be used as the starting point for
detailed design and for developing test plans. Use Cases provide the core of the requirements
that have to be satisfied at each iteration.

Transition - System testing, acceptance testing, user documentation, software installation are
performed. Use Cases are the core items of the Acceptance Test. They are also used to develop
user guides and for training.

Each phase terminates in a milestone, which is tagged by the official availability of a set of artifacts
(documents, diagrams, source code, executable programs and so on).

Each phase is subdivided into iterations. A iteration terminates in a build, i.e. an internal release of
artifacts that is used as a check point to verify that the objectives planned for the iteration have been

met.

During each phase/iteration, five core workflows take place:

Requirements capture
Analysis

Design
Implementation

Test

Figure 1, extracted from [3], shows that the emphasis on each core workflow changes throughout the
various phases. Note that all activities can be occurring during all iterations of the development. For
example, prototyping of a high-risk area may take place during inception. This is not waterfall - it's
merely that the emphasis varies between iterations.

Phases

Transition

Core Workflows [nception | Elaboration , Construction \

. . |
1
)

Requirements
An iteration in the
| elaboration phase

Analysis

Design

Implementation

Test

1
1
L
! 5
iter. — — — e o iter.
#2 #n-1

Iterations

Figure 1 - Project phases and workflows

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 18 of 83

See [3] for more details on the project life cycle defined by the Unified Software Development
Process.

3.3 Project milestones
The official project milestones are extremely important, since they make available to managers and
stakeholders a set of artifacts to be reviewed.

They have in this way the possibility of making crucial decisions before work can proceed to the next
phase and to monitor the progress of the work.

These milestones are fixed points in the planning and their existence helps the development team in
focusing the work toward specific dates.

For this reason it is essential that milestones be not postponed in case of delays in the project, rather
the scope of the milestone is clearly and officially restricted. This identifies and manages better the
project problems and allows deciding and undertaking corrective actions before the project runs out of
control.

Since the first phases of the project extremely important, an additional milestone has been inserted in
the middle of the inception phase of the first project cycle. This defines the following milestones:

Deliverable milestones

Software requirements review (software requirements)

Preliminary Design Review (software requirements and base architecture)
Final Design Review (Design concept and architecture)

System delivery

A

Final acceptance test
These are deliverables. Internal and project management milestones need to be added.

They will be described in the following sections, in terms of the deliverables and of the workflow that
drives to the milestone.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 19 of 83

3.4 First Iteration of Inception: from Kickoff meeting to Software Requirements
Review

Purpose:

Produce software requirements and system behaviour using use cases, understand basic
requirements

Reach agreement on basic requirements between development team and stakeholders

Draft scope of the system
Describe system context
Identify the actors, functional and non-functional requirements, risks

Formal Review

Artefacts:

Glossary and overall system description

System Context Diagram

Actors

Use Case Model (functional software requirements)
General and non-functional requirements

Risk assessment

Assumptions

Documentation Kit:

Online documentation
Software - Requirements Specification, issue 1.x

Draft project plan

Purpose

The purpose of the first Iteration in the Inception Phase is to understand the basic requirements of the
system to be developed.

At the end of this first iteration the Software Requirements Review has the purpose to reach an initial
agreement between the stakeholders and the development team on the requirements for the system and
to demonstrate to the stakeholders that the development team has a good understanding of the agreed
requirements.

This milestone is not part of the Unified Software Development Process, but it is essential for a good
start of a project, since it provides the opportunity for an official clarification on the basic
characteristics of the system using the formal language of the Use Cases.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 20 of 83

Stakeholders have an early possibility to evaluate how the development team has interpreted the
information provided (Statement of work, high level requirements, feature lists, etc.) and can provide
valuable feedback.

In every project there are two iterations in the Inception Phase:

e A short iteration terminated with a Software Requirements Review

e A longer iteration terminated with the Preliminary Design Review

Artifacts

During the first iteration of the Inception Phase, the following items are developed and delivered for
the Software Requirements Review:

Glossary and overall system description

A general description of the system to be developed and a glossary with the definition of the terms
used are essential to create a common background between all stakeholders and team members and
to avoid misunderstanding. If the domain of the project is not well known domain analysis should
be done and a domain model produced.

System Context Diagram
The context diagram shows the system under design as a black box and all the Actors that interact
with the system.

Actors

A description of all the entities interacting with the system. Primary Actors are the users of the
system (not necessarily human, also other software systems). Secondary Actors are all the sub-
systems that are part of the system and that have to be controlled by software or that are needed to
fulfill the requirements (like a Time Reference System, that is necessary to satisfy time precision
requirements).

Use Case Model

All the Use Cases are derived from the user requirements and from higher level documents.
The development team is responsible for writing the Use Cases based on whatever
information is initially provided by the stakeholders. Writing the Use Cases requires technical
knowledge and a good insight on the software development process.

It is not correct to ask the stakeholders to write them. When Use Cases have been inferred from the
available initial documentation they are discussed with the stakeholders and accordingly modified.
The language used to write the Use Cases is simple enough for the stakeholders to understand it,
but the process to obtain them requires technical knowledge that only the development team can
have.

General and non-functional requirements

Use Cases capture functional requirements, but a project is always bounded also by general and
non-functional requirements. These requirements specify the adoption of specific standards,
hardware architectures, software libraries or system performances, maintainability, extensibility
and reliability. Some of these requirements fit in the bodies of the Use Cases, but for most of them
specific document sections have to be written.

Imposed by project standards and by contour constraints.

Risk assessment
A first basic analysis of the areas of major risks in the project.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 21 of 83

3.5 Inception leads to Preliminary Design Review

Purpose:

Define system scope
Identify an architecture that can implement the requirements expressed for the system

Identify and mitigate the risks critical to the successful implementation of the system

Elaborate, extend and complement Use Cases of the previous phase
Detail critical Use Cases (create scenarios)

Draw activity and conceptual diagrams for complicated Use Cases
Identify sub-systems/packages

Identify hardware interfaces

Generate package diagram with interfaces in the packages

Place high-level class diagrams in packages

Step through use cases to verify package diagram satisfies use cases
Elaborate packages

Examine UML diagrams with checklists

Formal Review

Artefacts:

Update of all deliverables issued for the Software Requirements Review
Packages, package diagram

Interfaces with Actors

Deployment Diagram and Process View

Architecture diagram

High-level class diagrams

Performance Analysis

Design of critical Use Cases, Use Case model

Interface control documents

Simple state diagrams for complex use cases

Planning

Documentation Kit:

Online documentation

Software - Requirements Specification, Issue 2.x
System Design Description, Issue 1.x

ICDs with electro-mechanical devices

Project plan

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 22 of 83

Purpose
In the Inception Phase, the development team has to:

e Define system scope, i.c. it has to identify what is inside and what is outside the system. The
basic interfaces between the system and the Actors are sketched and they fit with what
provided or foreseen for the Actors.

e Identify an architecture that can implement the requirements expressed for the system. The
high level internal structure of the system is defined in a realistic way.

e Identify and mitigate the risks critical to the successful implementation of the system. Risks
can come from many technical and non-technical areas.

At the end of the inception phase, the Preliminary Design Review has to demonstrate that all these
objectives have been reached and that it is feasible for the team to proceed with the project, i.e. the
team has the technical capabilities to implement the proposed architecture.

A successful Preliminary Design Review also demonstrates that the stakeholders agree on the
requirements identified and on the objectives stated. They give their agreement to proceed with the
next phase.

Artifacts

During the whole Inception Phase, the team works on the items already delivered for the Software
Requirements Review (and in particular on the Use Case Model) and adds new details. It also works on
a set of new items that analyze the system both as a black box and as an open box in order to identify
the architectural baseline.

e Packages

The first step to draw the architecture of the system is to subdivide it into smaller and more
manageable units, called packages in the UML terminology[2].

Packages should have[1]:

e A ssingle functionality

e Strong internal cohesion

¢ Loose external coupling

e Minimal communication to other packages
Packages can also be recursively nested inside other packages.

The Packages Diagram shows the main interrelations between them. Figure 2 shows the complete
ATCS Packages Diagram as an example.

SE Practices Software Doc: ALMA-PRO-ESO-XXXXX-XXXX
ALM A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 23 of 83

<<C°°"gg‘sa"°“» <<Coordination>>| TR
< POM <<SubSystem>>|
M2
\ A <<Coordination>> <<SubSystem>> / <<SubSystem>>
/\ AG = FAS M10
<<Coordination>£ <Coordination> <<SubSystem>> <<Coordination>> <<SubSystem>>
TRK - |] FSS < | OPT NFD
v <Coordination>> <<SubSystem>>
CHP M6 \v <<SubSystem>>
<<SubSystem>>| Services
Tracking Axis /F <<SubSystem>>
CFD 7
4\ / <<SubSystem>>
ROS

—

%
All external communication to the ATC: { / r
isdirected to the Telescope Interface ﬁ
< > <<SubSystem>>
/ ACS
The Graphical User Interface is allowed
<<Int§dace>> to access any database attribute and
Graphical User d d t .
——— send any command to any package in
the ATCS.
/
/ / A
‘ <<SubSystem>>
TRL

P

<<SubSystem>>
ECS

routed commands to standard packagesﬁ

\%

<<Support>>

Support package VLT SW
for system build
and configuration Standard packages hierarchy as shown Package

L,-i,a(;;‘:!andard Packag}e" class / V\ ‘ /// / /
\ y y

<<Support>> <<SubSystem>> <<Coordination>>
ATCS Build Package Msw

to MSW Global States to "not Ignored" standard packages

Std -> MSW : Some packages need access ﬁ MSW -> Std : Standard commands

Figure 2- ATCS Packages Diagram

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 24 of 83

First identify the packages and distribute them on the processing nodes, than go in design details
package by package to identify the classes.

Note that alternative approaches are described in literature.

The above approach maps best our preconditions, since:

e Qur system is distributed on an already defined HW architecture and set of processing
nodes.

e We start from an existing and already known system, with HW sub-systems already clearly
identified.

Identification of packages

Packages are identified starting from an analysis of the Use Cases and (in particular for Control
Systems) of the defined HW architecture of the system.

The process consists of iterating the following four steps until the architecture is stable (see Figure

3):

1. Identify candidate packages putting them in one of the following 4 categories:

Subsystem packages

There is a subsystem package per every physical device (or group of strictly related
devices) to be controlled by our system. The package is fully responsible for the
control of the device and implements all the interfaces that are necessary to interact
with the electro-mechanical units that are part of the device itself.

Coordination packages

Are hierarchically above subsystem packages. They are responsible for actions of a
combined coordination nature, and they often use one or more subsystem to execute
their actions (for example "telescope presetting" or "tracking")

Interface packages

Implement the public interfaces that the system provides to primary Actors. These
include graphical user interfaces, but also programmatic interfaces and any other type
of command interface.

Support packages.
Packages that cannot be well classified in any of the three previous categories are just
simply defined as support packages.

2. Assign Use Cases to packages

Take the Use Cases one by one and assign each of them to the package that seems to be the
best candidate to handle the responsibility for that Use Case. Add new packages if none
seems to be responsible for the Use Case.

3. Take each Use Case and step through the courses

Each Use Case must be entirely executed inside the package responsible for it

If a step (or group of steps) has to be performed by another package, it becomes a Use
Case for that package

The package becomes a secondary Actor in our Use Case.

The steps are replaced with an interaction with that Actor, invoking the new Use Case
just identified.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 25 0of 83

4. Write Package Documentation consisting of:

e Package Description
A textual description of the package, following a predefined template

¢ Package Class Diagram
A first Class Diagram where every package is just represented by a class. It allows
representing the basic relations between the packages

e Package Use Case Diagram
It shows all Use Cases that are responsibility of the package and the relations with
Actors.

See chapter 8 for a template package documentation. In chapter 9 you find an example package
description extracted from the ATCS Online Documentation[8].

* Subsystem
Identify candidate * Coordination
packages * Interface
* Support

‘ Write package } Assign Use Cases

documentation

Step through the courses
of each Use Case

Figure 3-Identify Packages

Interfaces
This is the most important item for the external view of the system.

e Create an ICD (Interface Control Document) section in the Online Documentation.
There must be one ICD sub-section per Actor.

e Every ICD is subdivided in Interfaces, where every Interface describes a small number of
Operations that are highly internally coherent and loosely coupled with other interfaces.

e Every time a step in a Use Case involves an interaction of the system with an Actor, an
Hyperlink to the corresponding Actor:Interface:Operation is added.

e The ICD sections are used to extract the ICD documents for not already
implemented/existing Actors and to check the already implemented interfaces with the
existing Actors.

This process is essential for a correct cross-referencing and checking of interfaces. Clearly, the
level of definition of the Operations depends on the stage of analysis, design and implementation.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 26 of 83

It has to be ensured that all the needed Interfaces are specified. As soon as more detailed
information are available the ICDs are updated.

An example of ICD is given in APPENDIX C in chapter 7.
Deployment Diagram and Process view

The Deployment Diagram is a Structural Diagram. It shows a set of nodes and their relationships.
This diagram is used to show the static deployment view of the architecture, i.e. the allocation of
processes, as identified in the packages, to the processing nodes in the physical design of the
system. It is essential to be able to perform a performance analysis.

Performance analysis

It is essential for PDR to demonstrate that a reasonable estimation of the performances required is
available and that they can be met with the available HW. This has been done through a table with
processes/packages allocated to HW:

e CPU power/budget
e Estimated CPU consumption of SW, based on experience or previous projects
e Percentage of coverage from existing(reusable) SW

e Evaluation of the cost of implementation

Design of critical Use Cases:

For the most important and/or complex Use Cases it is necessary to provide more details, and in
particular it is necessary to demonstrate how the proposed system design is going to allow the
implementation of the Use Cases.

For this purpose some behavioral diagrams can be used[1][3]:
e Activity diagrams

An activity diagram shows the flow from activity to activity within a system (and in particular
for what concerns a specific Use Case). The diagram is especially important in modeling the
function of a system and emphasizes the flow of control among sub-systems or, going to higher
design details, objects.

e Interaction (Collaboration and Sequence) Diagrams

These diagrams are essential to model the dynamic aspects of a system. An interaction diagram
shows an interaction, consisting of a set of objects (at our design level, sub-systems) and their
relationships, including the messages that may be dispatched among them.

The Sequence Diagram emphasizes the time ordering of messages.

The Collaboration Diagram emphasizes the structural organization of the objects that send and
receive messages.

e State Diagrams

State Diagrams show a state machine, consisting of states, transitions, events and activities.
They are particularly important in modeling the behavior of an interface, class and
collaboration. They emphasize the event-ordered behavior of an object, which is especially
useful in modeling reactive systems.

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

27 of 83

For a preliminary design it is not necessary to go in the detail of state machine internal to every
single package. It can be very useful to provide a high level system state diagram and some
state diagrams for the sub-systems involved in external interfaces, where they can help in

understanding the dynamic behavior of important Use Cases.

e Planning

For the PDR documentation kit a planning has to be provided, showing:

1. Planned dates for Milestones. These include the major milestones for Final Design

Review, System Delivery and Final Acceptance Test, possibly repeated for the number of
incremental releases foreseen for the product.

2. Description of the purpose of each milestone

Deliverables to be releases with each milestone (documentation, tests, software)

4. Required items (type, quantity and dates) necessary as external preconditions to meet the

milestone.

An essential part of the planning activity consists also in assigning a priority level to all Use Cases
or eventually to Use Cases sub-flows, i.e. to scenarios. The content of a release and of iteration in
the Construction Phase is actually determined by identifying which Use Cases (or scenarios) will

have to be implemented, based on their priority.

This will be formalized in the planning delivered for FDR, that has to contain a mapping of all Use
Cases associated to any release, to allow formal tracing.

During this phase is also necessary to develop a first version of the detailed planning, that is not
necessarily part of the PDR documentation kit given for review to the stakeholder but that is

anyway essential for the FDR.

The System Design Description document contains also ALL information that is part of the
Requirements Specification. Readers interested only in requirements should get this last document.
Readers interested also in more details and in the system architecture need to get only the System
Design Description. The common information is in both cases imported from the ATCS Online

Documentation[8] to warranty consistency.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 28 of 83

3.6 Elaboration leads to Final Design Review

Purpose:

Identify a robust and resilient architecture

Identify and mitigate major risks

Support with a proper project plan a realist estimate of schedule, cost and quality.
Elaborate packages, Uses Cases, ICDs, class-diagrams, activity and interaction diagrams

Complete as much as possible use cases, packages, interfaces and classes

Prototype high risk areas

Identify common patterns and frameworks and detailed design for them
Build more detailed class hierarchies for packages

Create more detailed interaction diagrams for packages

Create more detailed state diagrams for classes

Detailed use cases

Detailed interfaces

Detailed package descriptions

Examine UML diagrams with checklists

Formal Review

Artefacts:

Updated and detailed deliverables issued for the Software Requirements Review and
System design description

Class diagrams, interaction and activity diagrams for all packages
Project plan

Executable architecture

Subsystem descriptions

Package descriptions

Documentation Kit:

Software - System Design Description 2.x
ICDs
Detailed design of complex packages

Detailed design of frameworks or patterns

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 29 of 83

Purpose
The purpose of the Elaboration Phase is:
e Identify a robust and resilient architecture baseline
e Identify and mitigate major risks
e Support with a proper project plan a realist estimate of schedule, cost and quality.

The Final Design Review must demonstrate that these objectives have been reached and the
stakeholders officially accept the proposed architecture. On the other side, the organization responsible
for the development finally commit itself in delivering the product with the agreed features and within
the agreed budget and planning forecasts.

This milestone is the no-return point in the project and all major risks must have been investigated.
Artifacts

During the whole Elaboration Phase the team works on the items already delivered for the Preliminary
Design Review, adding new details.

It is very important in this phase to develop prototypes to verify the proposed architecture and to
analyze the major risks. The prototypes also help in estimating the time and resources necessary for the
implementation, in particular when no historical data coming from previous projects are available.

Building prototypes as complete as possible in terms of control electronics and including a number of
hardware components is considered very critical. These prototypes are used in the elaboration phase to
assess the proposed architecture and verify that critical requirements can be satisfied.

During this phase, most of the time is used in the Analysis and Design work-flows[3] to build the
architecture of the packages (see Figure 4, where there is an example drawn from the ATCS Project).

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 30 of 83
ke Case diagram
<<messp>>
(SETPATH
A
Nesmyth\Whed!
(fromUe Case View)
§ More()
<<Ertity>>
NDheed
(from Tutorial) <nterfeoe>>
®) ramecPosiions NFDAbelf | e o j@\
(from Tutorial) .
¥ serefesin) ; Wf
8 SeFrerrPosiirt) B Nesmfn\ired
| RetrieveEnooderPosition() (from Use Case View)
$ Mow)
Persistent
Data
<<Contrd>>
SaNFDAhed
(from Tutoril)
SR (Jass Diagram

Figure 4

The basic architecture classes of a package are obtained from the step by step analysis of all the Use
Cases under the responsibility of the package itself.

These classes always fit in one of the following basic three categories:

Boundary classes
A boundary class is used to model the interaction between the package and the Actors, i.e. an
exchange of information or of action requests between the package and the Actors or other
packages in the system.
A change in an interface is usually isolated in one or more boundary classes.
In every packages there is typically one boundary class per every Actor interacting with it. It
implements all interactions identified in the Use Cases assigned to the package.

Entity classes
An entity class holds information that typically lasts beyond the life of a Use Case.
Entity classes are identified by:
¢ Finding from each Use Case description the information-bearing objects
¢ Finding them from the problem domain
¢ Finding them from the original requirement documents

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

31 of 83

Only classes needed in some Use Case must be introduced. One has to begin the search in the
Use Cases and use the other sources to confirm the choice and structure of the classes

identified.

e Control classes

A control class represents coordination, sequencing, transactions and control of other objects.

The dynamics of the system are modeled by control classes.

There is typically a control class per each Use Case, although simple Use Cases may not need a

control class.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 32 of 83

3.7 Construction leads to System Delivery

Purpose:
e Start building, using the previous work
e Atftain initial operation capability of the product
e Developers implement the design

e Integrate software, generate system and acceptance test plan

e Detailed module design
e Document module
e Code module
e Create and test module, provide code documentation
e Integrate into integration test
e Develop system test plan
e Develop acceptance test plan
e Examine UML diagrams with checklists
e Formal review of each detailed module design
Artefacts:
e Update and detail all deliverables issued for the Software Requirements Review
e Executable systems
e Draft user and support documentation
e Detailed unit design
e UML diagrams (state, sequence)
e UML component diagrams
e Code modules with documentation and automatic regression tests
Documentation Kit:
Online documentation (elaborated UML model)
Coded, tested and archived modules
System test plan

Acceptance test plan

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 33 of 83

Purpose
The purpose of the Construction Phase is to actually build the system.

The System Delivery milestone marks the end of the Construction Phase and shall demonstrate that the
system has reached a level of product capability suitable for initial operation in the final environment.

The system will still contain bugs and imperfections, but can be used. For commercial application
software, this milestone corresponds to the release of the first beta version of the product.

Artifacts

In the Construction Phase, the emphasis shifts from the accumulation of the knowledge necessary to
build the system to its actual construction.

e Packages are assigned to software developers, together with all the Use Cases that have been
assigned to them in the previous phase and that have to be implemented for the current iteration.

e Packages are implemented independently one each other. It is essential that interfaces with
Actors and between co-operating packages are defined in details. Every package must have its own
package (modular) test.

e Package implementation means implementation of all Use Cases (or part of Use Cases)
assigned to it. The whole process is Use Case driven.

e Packages are tested independently (modular testing). Black box testing is based on Use Cases.
Scenarios are used to produce Test Cases. Stubs replace external packages. Open box test is based
on Class Tests.

e Each iteration is closed by system integration. Frequent system integration allows identifying
early interface problems. Test Cases for system integration are obtained from the Use Cases.

The prototype developed for the Elaboration phase becomes now a "Control Model" and used for
modular testing of subsystem packages (that need to have access to specific electronic or hardware
components) and for integration testing.

The detailed module design is exclusively done using tools supporting UML modeling. No new
documents are produced. Detailed module designs are reviewed online.

Component diagrams are created, which derive from the package and class diagrams and map directly
to implementation units.

If detailed design affects the system and high level design the corresponding documentation has to be
updated.

The code documentation is integrated in the online documentation to have a complete reference
available. In particular they are linked to the component diagrams.

Code is organized in modules where each contains a regression test that can be run in an autonomous
and automatic way.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 34 of 83

3.8 Transition leads to Final Acceptance Test

Steps:

Purpose:

Artifacts:

Documentation Kit:

Make the system ready for unrestricted release to the user community
Perform system and acceptance tests

Use Case are used to develop test procedures

Integration, testing and delivery activities

Update and detail all deliverables issued for the Software Requirements Review
External release of final system
Acceptance test procedure reports

Final user and maintenance documentation

User and maintenance documentation

Test reports

Purpose

The purpose of the Transition Phase is to make the system ready for unrestricted release to the user
community. In ESO terms, it corresponds to the end of the commissioning phase for the VLT.

Artifacts

A Final Acceptance Test is set at the end of the Transition Phase.

The only area that needs changes to be properly integrated in the Use Case driven process is the
definition of the Test Cases. Test Cases for final acceptance are directly extracted from the Use
Cases. This is needed in order to meet the objective of tracing requirements through the whole
process down to final acceptance test by using Use Cases. All test procedures must be fully
automatic or, when this is not possible, based on a detailed checklist. The tools developed for
this purpose in the VLT project are very powerful.

Use Cases are valuable also for writing maintenance and user documentation.

AL M A Development Process
Methodology and Tools

SE Practices Software

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

35 of 83

The table below summarizes the phases and their respective artifacts:

SDD Typical Contents Project Phases
Design Task
Section U as Needed TIME = | Inception | Elaboration | Construction | Transition
U
Status Life cycle status retivic
N Revisions ctivities v v v v
Signoffs =
History
Definition: Problem description:
Requirements e System description
& e Interfaces In
Analysis e Hardware
e Software
e Requirements: v v
e Functional
e Non-functional
e Actors & Agents
e Risks
e Assumptions
. Baseline Architecture
Design
High Level Design
Package Divisions
e Interfaces Out
e Hardware
e Software
UML diagrams:
v
e Use Cases
e Conceptual Model
e C(lass
e Activity
e Collaboration
e Sequence
e Package
e Deployment

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AI M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 36 of 83
Implementation Detailed Design:
Coding Spec
Algorithms
UML diagrams:
v
e Activity
e Collaboration
e Sequence
e State Machine
e C(Class
Test
Acceptance
Delivery
Glossary v v v

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 37 of 83

3.9 Use Cases

Use Cases drive the whole software process and bind together all the phases from requirements capture
to final delivery of the system and maintenance.

They are a very effective way of communicating with customers and among team members. Before
every discussion we always provide the partners with a set of relevant Use Cases.

During meetings, they stimulate focused discussions and help identifying important details.
3.9.1 WHAT and HOW

It is important to keep in mind that Use Cases have to describe WHAT the system has to do in
response to certain external stimuli and NOT HOW it will do it. The HOW is part of the architecture
and of the design.

It if often not easy to keep these two aspects separated. In particular, during the project's phases, Use
Cases evolve and many details are added. When Use Cases are assigned to packages (see chapter 2)
and the black box representing the system is opened, all Use Cases are detailed, adding the
communication between packages. This information is of no use for readers interested in the system
only as a black box.

Two levels of access to the Use Cases are provided, introducing a design view, identified by the b
symbol. This view contains details that are pertinent only to design and can be skipped to obtain the
requirement view only.

The "Notes:" section in the Use Cases is used to describe non-functional requirements directly related
to a specific use case.

3.9.2 Use Case Diagrams

The interrelations between Use Cases and Actors are expressed in graphical form by drawing Use Case
Diagrams using the UML.

These diagrams are important to give an overview of the functionality of the system, but their
understanding clearly requires a minimal knowledge of the UML syntax and this cannot be assumed for
all stakeholders, which are often non-technical people.

For this reason there exists on one side the Use Case diagrams and on the other side the HTML tables
of contents of the Use Cases, grouped according to different criteria. All the relations that appear in the
Use Case Diagrams as hyperlinks are implemented in the online version of the Use Cases.

An example of Use Case diagram, representing the ATCS Use Cases related with telescope tracking, is
given in Figure 5 below:

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 38 of 83

| Set Remaining Tracking Time Limit
i
TRS

/
iy
Get Tracking Remaining Time

/
|/
<<timer>>

|

/] -

/]

/, = >

/ - /

/ Set Tracking Wavelength —>
Tracking Loop

/
Il
J
;{ K > (from TRK)
User Set Tracking Additional Velocity J
\ /
\ Y

\ —
\
K\,,,)/
Tracking Axis

\
\ Offset Alt/Az

\ Drjve
\
\ _
\
| ap
T <<include>>
Autoguider Offset N T
(from TRK))
<<i/F§Iude>> —_——

Offset Alpha/Delta

{ (from TRK)

Telescope Offset

Figure 5- Tracking Use Case diagram

The syntax is rather intuitive:
An ellipse represents a Use Case, i.e. it is linked with the textual description of the Use Case

°
with that name.

e A stick man represents an Actor, no matter if human or not

A line connecting two entities represents an association. The arrow represents the direction of

[)
the association.

For more details on the Use Case Diagram syntax, see [1].

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 39 of 83

The diagram represents a group of Use Cases and describes which Actors interacts with the system
when a Use Case is executed and shows relations between the Use Cases. Selecting one of the Use
Cases, the textual description of the Use Case itself is opened.

3.9.3

Use Cases: scope and target readers

It is very important to agree and define on the scope of the Use Cases and on the target readers.

The following constraints have to be taken into account:

which type of software we are going to develop (for example: control systems, i.e. software
that directly controls custom hardware and electronics);

who are the main contact points and interlocutors during the project;

who are the "users": in most cases, other software systems or human operators with a high
degree of specialization and with a good knowledge of the architecture of the system;

graphical user interfaces are not a primary focus of the development. User interfaces are
considered as an independent layer on top of the application and use the same interfaces that
are used to interact with other systems or between packages (see chapter 3.6). Engineering
User Interfaces are built together with the software packages when needed, while final operator
user interfaces are typically developed during the transition phase (see chapter 3.8) by the
commissioning team, in tight co-operation with operators and final users of the system.

Taking these aspects into account, it can be decided which type of Use Cases we are going to write. At
this point it is not possible to set up a unique rule, a Use Case can be small or large, more or less
detailed.

Here follow some general rules:

e At the first phase of the project, the use cases should be not more of the 10% of the total; they
should describe the system at “high level”;

e The detail level depends on the phases of the project (the more advanced is the project, the more
detailed use cases can be written) and on the interlocutors or contact points for whom the Use
Cases are written;

e When a choice is done, it is very important to keep it coherent throughout the whole process: all
Use Cases must be "in the same style" and with the same type of contents. This can be achieved
with a good communication and with a continuous exchange of information between the team
members responsible for Use Case development and maintenance.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 40 of 83

4 Reference

This chapter describes the practical work that has to be done during the different phases of a project.
The tools to be used will be presented as well as some procedures that have the only aim of making
work easier and faster. We report also the version of the tools with which we tested the procedures.

4.1

Setup of the working environment

The system needs a UNIX workstation as repository for the database (all the work that has to be done
should be stored on it) and one or more PCs to run the Analysis and Design tools (Rational Rose).

The system has been tested in the following configuration:

UNIX (HP 10.20) with the following tools installed:

gnu make 3.75
tcl 8.2
scripts contained under the directory src in the template module (see section 4.2).

a tool to perform an automatic check on the web consistency. We use MomSpider, 1.00, that
needs Perl

NFS exported directory to the PCs (we use Samba 2.0.4b)

PC (WINDOWS NT 4.0 SP 4) with the following tools installed:

MS Word, 97-SR 2, used for:

e cditing online pages

e automatic generation of printable documents from online pages

Rational Rose Modeler Edition (or Professional C++ Edition), 2000e, used for the UML Model
DocEXPRESS/Reporter LITE, 2.0, used to generate HTML files from Model files

A tool to handle planning diagrams (for example MS project)

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 41 of 83

4.2 Module template

The work is accomplished using a module under configuration control. Everything has to be done
within this module: the work with Rational Rose, any kind of diagram and any kind of documentation
in HTML as well as MS Word format.

The module template is available on the web at the ESO ftp site. It can be retrieved by anonymous ftp
from the directory:

/pub/vlt/vit/pub/tmp

Retrieve the tar-gzipped file: almatpl.tar.gz and run:

gunzip almatpl.tar.gz

tar xf almatpl.tar

to get the template module directory
almatpl

Then, you can customize the module and change the name accordingly to the project you are working
with.

The module has the following directory structure:

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

42 of 83

7.

8.
9.

b=

index.htm
ChangeLog
HowTo.htm
Images
arrow.gif
eso-logo.gif
linel.gif
redball.gif
ArchiveDocuments
ALMA-XXXX
README
MilestoneReleases
FDR
ALMA-XXXX
actionltems.txt
commentList.txt
commentsProcessed.txt
commentsReviewed.txt
newRequirements.txt
reviewCall.txt
PDR
SRS
Model
Help
ICD
Packages
Project
Rose
UseCases
Plan

sSrc¢

10. bin
11. object

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

Page: 43 of 83

Here follows the detailed description of the directory structure of the template module. (The same
description is supplied in a README file per each directory of the module.)

1. index.htm

This file contains the index for the on-line documentation. (Beware that in the file, the model
generated with Rational Rose as well as the html file generated with the Web Publisher are called
rose.mdl and rose.htm. If you change the name, change accordingly the references to the name
“rose” in the index.htm file).

The Table Of Contents has three main sections.

Online Documentation

This section is the main entry point to the web of hyper-linked documents; from this point
every item can be reached.

We have organized it to have a tree skeleton: directly reachable from the main page are
overview documents, that link to more detailed pages.

The purpose is to give to the occasional reader the possibility of getting easily a global picture
of the system, while the experienced reader can in a few jumps go to the required level of
detail.

From low level information, transversal hyperlinks lead directly to detailed information in
parallel branches of the documentation tree.

To increase navigability we have made use of frames. Typically the left side is a table of
contents, while the right side contains the selected item.

Printable documents - Official releases

Documents are officially released at major milestones to keep track of the history of the
project. This section points to the printable documents officially released and sent to the ESO
archive, to allow download and printing (see directory MilestoneReleases in the module
template).

This section allows accessing the printable documents that have been officially reviewed by
the stakeholders. It gives a picture of the evolution of the project through the various phases,
marked by the major milestones.

Reviewers are always encouraged to access the online documentation, but we have seen that
they rather prefer to work on the paper documents. This is due probably to the fact that most of
the people are used to work on paper documentation and reviews are typically done offline.

We know that it is anyway not convenient to read on the computer screen a big amount of

documentation.

Printable documents - Current development

This section points to the current development of all printable documents, i.e. to the directories
where the document's sources are kept and updated (see directory ArchiveDocuments in the
module template).

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 44 of 83

ChangeLog

This is a file where each user must document the modification yielded to the module, following the
syntax:

<modified_file> : one-sentence description of the modification

HowTo.htm

This file contains the procedures that are described in the following sections.
Images

In this directory some standard images used in the documentation are stored.
ArchiveDocuments

In this directory we put all the documents under editing. For each document we prepare a directory,
named accordingly to the ALMA standards. The README file gives some instruction about the
standard documentation layout. At the time being, an ALMA document template is under
preparation. We supply a first version of the WORD template, called: DocumentAlma.doc.

MilestoneReleases

This directory collects the documents have been released at each milestones (the official ones and
the notes, comments, review calls and minutes have been produced). This documentation is not
modified any more. Basically, when a document is consolidated, it is copied from the directory
ArchiveDocuments to this one.

Model

Under the directory Help a set of html files can be found. Two of them have to be edited and
customized: Abbreviations.html and Glossary.html. The others are automatically generated and
represent an on-line help.

The directories: ICD, Packages and Use Cases have a common structure: four html files handle
the initial page with a frame layout:

the left-side frame (handled by the file IndexIp.htm) contains the list of ICD (Interface Control
Document), Packages or Use Cases of the project; all these items have to be created as html files
in the corresponding directory and listed in the IndexIp.htm file. In the UseCases directory the
template for the use case can be found, (UseCaseTemplate.htm), as well as the
UseCaseTemplateDoc.htm. This second file contains the explanation for the different sections of
the Use Case Template; we supply also the Collaboration Case template (CcaseTemplate.htm): the
only difference with the Use Case template is that in the Collaboration Case template there is not
the Priority section (see section 4.4.1);

the central frame (technically speaking this is the target frame, where the pages resulted from the
“click” on a link in the left-side frame are open) is a general description of what is contained in the
corresponding directory;

the bottom frame contains some helpful definitions.
The file Index.htm contains the necessary definitions for the frame layout of the page.

Project contains some files for a general description of the project, like the Actors involved, the
general requirements of the project, applicable documents, reference documents and so on. The
names of the files are self-explanatory.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 45 of 83

Rose contains the model created with Rose: rose.mdl and two directories: Html where all the files
generated with the Rose Web Publisher are stored and doc where the files created with DocExpress
are put (see the following chapter to better understand the meaning of these two directories).

8. Plan
This is the directory where the documents concerning the planning of the project can be put.
9. Src

Under this directory, you find the Makefile and a set of scripts that will be described in the
following section. Beware that, if you rename the module template from almatpl to <your name>
you should change accordingly all the references to the almatpl name in the scripts and in the
Makefile in the directory src. In the same way, we reference the Rose model as the file rose.mdl
and the corresponding html file as rose.htm. Again, if you change the name, change accordingly the
files under the src directory.

10. Bin
In this directory some executable files (generated running make under src) are put.
11. Object

In this directory some object files (generated running make under src) are put.

4.3 Organizing the project

The overall project has to be divided in sub-projects. For each sub-project a module is created that
contains all relevant documentation. It means that you generate different modules with different names
from the module template.

The interfaces between these modules are defined with ICDs.

A natural sub-division of the ALMA project could be to create a module for Correlator, Antenna, Data
flow, Receiver etc.

4.4 Working within the module

Once the module has been created, a first customization work has to be done on the files supplied by
the template. They are html files that can be edited with word. (Other tools are, at present, under
examination, like Dreamweaver for the editing of html pages).

Then, the first use cases can be written, in html format as well as within the Rose model.

4.4.1 Working with Rational Rose

In this section, we intend to give some advice useful in organising the work with the Rational Rose
tool. We recommend you to follow them to obtain a model with a standard structure and to make easier
the communication with other groups.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 46 of 83

v TIP

Starting with the Rose model, it’s very useful to set the path to the module directory as the
environment variable ALMATPL ROOT, so that any other user who wants to work to the
module from another directory can easily find all the references and links just setting
accordingly this variable. From the menu Edit choose Path Map and set

SALMATPL ROOT to the desired path.

The first use cases you write belong to the requirement phase. It is suggested to create them under
the Use Case View with a flat structure. In a later stage, these use cases can be organized in
packages under the Use Case View and design information can be added. Each package will
contain related use cases.

At the same time, the need for writing new use cases will arise. All the use cases created after the
requirement phase are called Collaboration Case and can be prepared using the template
CcaseTemplate.htm supplied with the module in the UseCases directory.

This second type of use cases should be kept separated from the previous one. It is recommended
to organize the Collaboration Cases in packages under the Logical View.

On the repository, under the directory Model/UseCases in the module, you should create a
directory per each package; when a directory corresponds to a package containing Collaboration
Cases, the directory name must be in the form:

<name>-CC
CC obviously means Collaboration Case and must be upper case.

When you create diagrams, the name should be prefixed with the package name.

v TIP

If a diagram is created, don’t let it empty, if not DocExpress will generate an output that
doesn’t meet the structure we need for parsing.

The Actor package has to be created in the Use Case View.

After creating the use cases, packages and actors in the Rose model, the following links have to be
defined:

e Each Use Case bubble has to be linked with the corresponding Use Case html file.

e Each Package contained in the Logical View has to be linked with the corresponding package
description.

e Each Actor has to be linked with the corresponding ICD html file.

To do this, from the Rose tool, select an item (use case, package or actor), right click on it and
choose “Open Specification...”. A window pops up. Select “Files”. Right click on the window and
choose “Insert File”. Type the path to the htm file corresponding to your item. The link is done.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 47 of 83

4.4.2 Creating printable documents: Web Publisher

When it is necessary to generate a printable document, perform the following steps to create the htm
files from the Rose model, using the Web Publisher in the Rational Rose product:
e delete SALMATPL ROOT\Model\Rose\Html*

e Open the model with Rose and load ALL sub-units

e Select Tools->Web Publisher

e Select as Level of Detail: Intermediate.

e Select as Root File Name: SALMATPL ROOT\Model\Rose\Html\rose.htm
e Press Publish and Wait...

e Open a Unix shell, cd to almatpl/src and execute:

e make all

e make web (NEVER run more than once after published by Rose)
All loose ends in the model are linked to a file containing some information about the loose end.
Since there might be several thousands of them, we remove them and replace them by one single
file.

e Optional: note the drive where the Rose model is on your PC (just the lower-case letter) and run
make DRIVE=<your_drive> replace
The web publisher tool produces links that have the Windows path in it. We don't need them and
we replace the absolute paths with the relative ones

e Ifyou have a web server, transfer the created files to it.

The Rational Rose Web Publisher automatically generates all the Rose diagrams in one of these
formats: jpeg, png (Portable Network Graphics), Windows Bitmaps. The default is png. You can
change the default from the Rose Web Publisher, pressing the bottom “Diagrams...”. By the quality
point of view, the best one is png, but it is not enough for a printable document.

4.43 Generate diagrams in EMF and GIF format from the Rose Model

To get good quality printable diagrams from Rose, use the product ATA DocExpress/Reporter LITE.
With this product (and some final touches made by the script XP2IMG.tcl supplied in the src
directory), two files per diagram are generated in the format gif (for the web) and emf (for the
printable document). This is the procedure:

e Open the model (SALMATPL ROOT\Model\Rose\rose.mdl) in Rational Rose under Windows

Select the menu: Report -> Document with DocExpress...

In the welcome panel, click on "Continue..." and in the report panel, select:
1.Report Format is HTML
2.Report Type is Pre-Defined Reports
3.Next

In the pre-defined reports [HTML] panel, select:

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 48 of 83

1.Report Type Name is Entire Model
2.Set the output file name to SALMATPL ROOT\Model\Rose\doc\<modelName>.html*
3.Finish

Output

docExpress generates the following files:

<modelName>.html: Full html view.

<modelName> FV.html: Full html view using frames for TOC, LOF and LOT.
<modelName> TOC.html: Table of content

<modelName> LOF.html: List of Figures

<modelName> LOT.html: List of Tables

tmp_<mmddhhmnssn>.EMF: Diagram in EMF format and
tmp_<mmddhhmnssn>.gif: Diagram in GIF format

where <mmddhhmnssn> indicates the generation date (month, day, hour, minute, second)
followed by a current index.

e Generate the final image files for the online and for the printable documentation: open a Unix
shell, cd to almatpl/src, change in the Makefile the string rose.html with <modelName>.html’,
prepare the lookup tables in the XP2IMG.tcl script, under src (see next section for an explanation
on how to use and maintain the XP2IMG script) and execute

make all

make diagrams

4.4.4 How to use and maintain the script XP2IMG.tcl

The Makefile calls the tool XP2IMG (located under bin).

It is an automatic procedure that parses the file Model/Rose/doc/<modelName>.htm and renames the
image files tmp * EMF and tmp_ *.gif to their assigned named into the Images directories of
Model/UseCases and Model/Packages respectively. (The file extension of the .EMF files is set to
.emf).

The lookup tables are maintained inside the script source and are the consistency links between the
model and the documentation. You should edit the script accordingly to the diagrams you prepared in
your model. In the script, in the MAIN section® you find the following tables:

? Be careful that, even if you put the extension ‘htm’, the DocExpress tool will create a file with ‘html’ extension.
3 Note the ‘html’ extension: DocExpress generates files with the 4-letters extension.

* A new version of the script is in preparation, where the tables will be supplied as separated files.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 49 of 83

e Deployment Diagrams
e Activity Diagrams

e Sequence Diagrams

e State Diagrams

e Component Diagrams
e Use Case Diagrams

e (Class Diagrams

In each table, there is a list of the files that have to be processed by the script. The format of each
record in the list is the following:

{new_name "title" where}
In braces, you should put:
e First field: your name for the diagram;

warning: use always different names. If the same diagram is in both the Logical and UseCase
View, it is recommended to call it <name>lv and <name>uc for the two views.

e Second field: string that correspond to the title for the diagram as it is in the
almatpl/Model/Rose/doc/<modelName>.htm file;

e Third field: location for the diagram; you can put lv (Logical View) or uc (UseCases view). The
final image will be put in the Package/Images directory or, respectively, in the UseCases/Images
directory.

4.4.5 Generate filtered files for DD and SRS documentation

Printable documents can include only information relevant at requirements level or also all available
information, added at design time or after design. With this final phase of the procedure, we generate
both type of documents, running

make filter

from the src directory of the template module (it is assumed that you have previously run make all).
The Makefile does everything automatically, using the scripts: HTML2DD.tcl and HTML2SRS.tcl.
The result of this action is the creation of two sub-directories under almatpl/object:

SRS and DD.

In these sub-directories (SRS for “requirements” documents and DD for “design” documents) you will
find all is necessary to build a word document: al the html files and all the images in gif as well as emf
format. (We remind you that the emf format is the most suitable for a word document).

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

50 of 83

4.4.6 Working with word

Starting from the word document template DocumentAlma.doc contained under
almatpl/ArchiveDocuments/ALMA-XXXX you can simply insert the different html files and images
prepared under the SRS or DD directory.

Open the document under Microsoft Word, choose Insert -> File.... Check the box “Link to file” and

select the desired file.

Warning: the inserted file has an absolute path hard-coded. You can easily check and eventually
change this path following this procedure:

e select the inserted document;

e click with the right button of the mouse;

e choose “Toggle Field Codes”.

v TIP

When a document is released, it must be copied from the ArchiveDocuments directory to the
MilestoneReleases directory. Before the copy is done, all the links should be removed from the

document.

To remove the links, open the document with Microsoft Word and select the menu Edit ->

Links...

A window called “Links” will appear. In this window, select all the Source files and press the
button “break link”. The source files containing pictures will remain in the list. To remove
these links, check the box “Save picture in document” and press again the button “break link™.

4.47 Checking the web consistency

The web consistency checking can be performed with the MomSpider tools. We are aware that a lot of

other tools can be used. We give support for this one, but anyone is free to use the tool he prefers.

To use MomSpider, open a UNIX shell and run:

momspider

The results are put in the SALMATPL_ROOT/MomSpider directory.

Look in particular for the "Broken links" section.

4.5 To be done

e The integration between the tools is not complete.

e A lot of work has to be done by hand or by writing support scripts and tools: the procedure has to
be simplified or improved.

e New tools are under examination.

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

51 of 83

4.6 Troubleshooting: surviving MS-Word

Microsoft Word has many bugs and nuances, but with some tricks it is possible to survive (we are

using MS-Word 97 SR2):

e To avoid crashes and corrupted documents when updating documents with many external links:

e In the Tools->Option->Save panel, toggle OFF "Allow Fast Save" and "Allow Background

Save" options

e To update all links, always take the Edit->Links panel, select the links you want (also all) and
update. DO NOT update many links directly from the editable area.

e [t is better to open a word document launching Word and choosing the menu File->Open, instead
of clicking on the document from the "Explore" tool. In this case, the current directory for Word is
the default one, very likely different from the directory where you have all your linked documents.
If you cannot find some imported files, close every document and reopen only the one you want
from the File->Open menu.

e For the same reason, if document have links to HTML files, open and edit only one at the time.
Word has just one search path for included files and gets confused if you have more documents

open.

e Always update the TOC of a document just before printing. Go to the TOC and press F9.
Otherwise it is very common to get "ERROR: Bookmark not found"

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 52 of 83

5 APPENDIX A: Use Case template

5.1 The Use Case template

Use Cases are written as structured text using a formal template. The usage of plain text facilitates the
understanding of the Use Case by people with different background. A formal template forces a
recognizable and common layout; relevant information is easier to find and communication is
optimized.

What follows is the empty template:

SE Practices Software
Development Process
Methodology and Tools

ALMA

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

53 of 83

1.1 Use Case: Use Case Template

[Provide a sentence or short paragraph that clearly defines the purpose or goal of the use case.

A use case should have only one goal. Using goals helps specify the scope of a use case.]

Role(s)/Actor(s):
Primary:
Secondary:

Priority: ...

Performance: ...

Frequency: ...

Preconditions:
1.

Basic Course:

. ..
Alternate Course: ...
Exception Course: ...
Postcondition: ...

2. ..
Alternate Course: ...
Exception Course: ...
Postcondition: ...

Subflow:

1. Do first step
Alternate Course: Optional Alternate Course Titlel.
Exception Course: Optional Exception Course Title 1.
Postcondition:

2. Do second step

Alternate Course:

1. .
Exception Course: ...
Postcondition: ...

Exception Course: ...
Postcondition: ...

Exception Course:

- }’.ostcondition.'
2.
Postcondition: ...
Postconditions:
1.
2.

Issues to be Determined or Resolved: ...

Notes:...

Last modified: Thu May 11 11:53:19 UTC 2000

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 54 of 83

The template contains many sections to be filled in, although it is not mandatory to fill in all of them.
Some examples are given in appendix A.

We do not go here into too many details, for which we have already given the proper reference
documentation.

We just want to stress that an unstructured description of the course of a Use Case in not sufficient,
because it leaves too much space to interpretation and does not force people to identify and discuss
systematically important aspects of the system.

The purpose of the Use Case is to describe with as much details as possible the interactions with the
system under development and the actions that it performs, seen as a black box, in response to the
stimuli coming from the Actors. Details are added during the project phases as they are analysed and
are discussed with the stakeholders.

In the following sub-sections we describe the most important fields in the Use Case template.

Role(s)/Actor(s):

[An actor is a role of an entity external to the system. Actors can be humans, machines, or devices.
"One physical object may play several roles and therefore be modeled by several actors".

A primary actor is one having a goal requiring the assistance of the system.

A secondary actor is one from which the system needs assistance to satisfy its goal.

One of the actors is designated as the system under discussion.]

Primary:
Secondary:

Priority: ...
[How critical is the Use Case to the system:
o Critical: "I absolutely must have this function for any real system"
o Major: "I can live without this function for a short period"
e Desirable: "It is an important function, but I can survive without it for a while". |
Performance: ...
[The amount of time the Use Case should take]
Frequency: ...
[How often the Use Case is expected to be performed]
Preconditions:

[Preconditions indicate circumstances that must be true prior to the invocation of the Use Case. If
preconditions have an ordered sequence, display them in an ordered list. If this Use Case depends
on a previous Use Case's successful execution, list the previously executed Use Case in this
section. If a precondition is not satisfied, the final state of the Use Case is undefined.]

Basic Course:

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 55 of 83

[Each Use Case has only one basic course. The basic (or main) course is the sequence of steps that
the Role or Actor is likely to take in order to accomplish the goal of the Use Case. The first step
describes the action that initiates the Use Case.

Each step can optionally have alternate course(s), exception course(s), and/or postconditions. The
postconditions of the last step is not necessary because the postcondition of the Use Case
(validates that the Use Case goal was met) should be valid.

Steps can optionally refer to other Use Cases for "use relationships" or Collaboration Cases for
traceability. Alternate and exception courses should be defined within the same Use Case.

Use relationships occur when you have a chunk of behavior that is similar across more than one
use case and you don't want to keep copying the description of that behavior. Use it when you are
repeating yourself in two or more separate uses cases and you want to avoid repetition.

Extend relationship occur when you have one use case that is similar to another use case but does
a bit more. Use extend when you are describing a variation on normal behavior. |

Alternate Course: ...
Exception Course: ...
Postcondition: ...

Alternate Course: ...
Exception Course: ...
Postcondition: ...

Subflow:

[OPTIONAL - Each Use Case has zero to many subflows. A Subflow is a sequence of actions
within a Basic, Alternate or Exception Course that is identified with a unique name. A Subflow acts
as a building block of Courses. Courses can (if applicable) be build up with Subflows.

For example if we have a set of closely related requirements that form a single goal and help to
clarify the requirement more as if we moved them to individual Uses Cases.

All the rules of Basic Courses apply also to Subflows (i.e. they can have Alternate flows, Exception
flows etc.)]

1. Do first step
Alternate Course. Optional Alternate Course Titlel.
Exception Course: Optional Exception Course Title 1.
Postcondition: Optional step postcondition description

2. Do second step

Alternate Course:

[OPTIONAL - Each Use Case has zero to many alternate courses. The alternate course is a
different sequence of steps that the Role or Actor can take that also accomplishes the goal of the
Use Case. The alternate course extends the basic course with additional steps. The title of each

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 56 of 83

alternate course should appear exactly as written in the cross-referencing Basic Course step.
Alternate courses may include exception courses and optional postconditions. NOTE: This is the
same as the UML's "extend relationship" of Use Cases.]

Exception Course: ...
Postcondition: ...

Exception Course: ...
Postcondition: ...

Exception Course:

[OPTIONAL - Each Use Case has zero to many exception courses. The exception course is a
sequence of steps that the Role or Actor takes when the task is interrupted or a single
postcondition that validates the exception course was taken. The exception course indicates the
cause of the interruption, then indicates how the Role or Actor recovers. Exception courses must
provide at least a postcondition for the step that validates the exception course that was taken. The
postcondition that validates the goal of the Use Case is not necessarily true after the exception
course has been taken. The title of each exception course should appear exactly as it is in cross-
referencing Basic Course step. |

1. ..

Postcondition: ...

[Optional step postcondition description]
2.
Postcondition: ...

[Mandatory postconditions that validate the exception course. |

Postconditions:

[The postconditions validate that the basic course and all alternate courses successfully achieved the
stated goal of the Use Case. The postconditions are not necessarily true if an exception course was
taken.]

Issues to be Determined or Resolved: ...

[OPTIONAL - List any issues that remain to be decided, or to be reviewed regarding this use case.
These issues may include scope of the use case, task description, or user interface.]

Notes:...

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 57 of 83

[OPTIONAL - List any note that help in clarifying the Use Case, but that do not fit in any other
standard Use Case field.]

Last modified: Fri May 12 11:34:48 UTC 2000

The Exception Course, Preconditions and Postconditions sections are very important, since they are
traditionally not taken into account in other requirement capture methodologies. The fact of having to
fill in these sections at each step in the Use Case helps in identifying the requirements related to the
handling of unexpected and exceptional conditions (i.e. what the system must be able to do by itself,
when and what manual interventions are necessary, what information must be preserved and so on). In
particular this forces a discussion with the stakeholders that in our experience otherwise will
take place only at system delivery.

5.2 Requirement and Design view: how to create them

To mark a text as Design view, you can tag it using a special comment instruction:
<l-- VLT-DD->

The scripts used to parse the files in the rose model and supplied with the module template are made in
such a way that they can automatically recognize the text to be skipped via this particular tag. You can
also choose weather to mark the text with an arrow (as you can see in the example in Appendix B) or
not.

To enclose simple text, with no "arrow marker":

<l-- VLT-DD -->
.... your text.....

<!--/VLT-DD -->

To enclose text with the arrow on the left side you need a table. The arrow is a gif image arrow.gif
supplied with the template module in the directory Images.

Depending on where you are in the file tree of the module you need to fix the path for the arrow image
and for the link to the DD help information.

<!-- VLT-DD --><TABLE> <TR VALIGN="top">

<TD WIDTH=12 BGCOLOR="#D0D0D0"><A HREF="../Help/DDEntry.htm"
TARGET="Help"><IMG SRC="../../../Images/arrow.gif" ALT="[Design
Description Entry]">

<TD> ... this is the text to be marked as "design information"

</TR></TABLE><!-- /VLT-DD -->

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

58 of 83

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

59 of 83

6 APPENDIX B: Use Case examples

This section contains a few examples of Use Cases extracted from the ATCS Online Documentation
[8]. They are put here just to give the feeling of how our Use Cases look like and to allow a first check
of the concept described in the text. It is anyway suggested to look at the ATCS Online Documentation

[8].

6.1 Use Case: ATCS Start

Description: Each required sub-system used during observation is brought from state STANDBY to

state ONLINE, i.e. all sub-systems are completely activated and the telescope is under position control,
ready to move at next operative command.
The brakes are disengaged, the control loops closed, A failure will leave the ATCS in state STANDBY

substate ERROR.

Use Case Type: Concrete

Role(s)/Actor(s):

Primary: Operator, Maintenance
Secondary: Standard Packages

Priority: Major

Performance: A few minutes

Frequency: Whenever necessary.

Preconditions:

e ATCS is in state STANDBY

Basic Course: Start automatically

e Send command START to Start ATCS
Exception Course: Command failed

e ATCS puts ONLINE all required and not ignored subsystems used in observation mode

L. by using Standard Command

Control loops are enabled and brakes disengaged.

L (Interface: IfAltDrive IfAzDrive)

Exception Course: Some sub-systems failed to go ONLINE

Postcondition: all required and not ignored subsystems are ONLINE

e ATCS global system state update

Postcondition: ATCS in state ONLINE, substate IDLE

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 60 of 83

e ATCS sends final OK reply

Alternate Course: Start manually

e Put ONLINE all required and not ignored sub-systems one by one.
L. by using Standard Command from the Control GUI

Exception Course: Some sub-systems failed to go ONLINE
Postcondition: all required and not ignored subsystems are initialized and in ONLINE state

Exception Course: Command failed

e ATCS global system state update
Postcondition: ATCS in state STANDBY, substate ERROR

e ATCS sends final ERROR reply

Exception Course: Some sub-systems failed to go ONLINE

e ATCS global system state update
Postcondition: ATCS in state STANDBY, substate ERROR

e Ignore sub-systems that failed
Alternate course: Retry to Start manually for failed sub-systems

Postconditions: These are postconditions that validate the goal of the use case.

e ATCS is in state ONLINE substate IDLE

o All required and not ignored ATS subsystems used in observation mode are initialized and
ONLINE
(control loops are enabled and brakes disengaged).

Issues to be Determined or Resolved:

Notes:
Last modified: Mon Jul 3 14:33:10 METDST 2000

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

61 of 83

6.2 Use Case: Telescope Offset

Description: Offset the telescope position of the given (alpha,delta) step.
The offset value is simply added to the reference position of the telescope. The telescope axes move to

(alt,az) values corresponding to the new sky coordinates.

It is seen by the user as a change of the actual position with respect to the last preset (or rather the last

position).

An offset step is always relative to the current position of the telescope (i.e . consecutive steps are
accumulated). To issue a new offset it's not necessary to wait until a previous offset has completed.
Consecutive offsets are therefore not lost if one does not exceed the defined performance limits.

This command CANNOT be used while guiding or doing field stabilization, since the guiding system
is not aware of the offset and the behaviour of the system is unpredictable. Use Combined Offset

instead.
This UC uses Offset Alpha/Delta

Use Case Type: Concrete

Role(s)/Actor(s):
Primary: Operator/Maintenance
Secondary: Alt/Az Axes

Priority: Critical
Performance: up to 1.5 deg/sec in Alt and 2 deg/sec
Frequency: Asynchronous up to 10 Hz

Preconditions:

e ATCS is ONLINE Tracking

Basic Course:

e Send command OFFSAD to offset the telescope of (alpha,delta) in arcsec

Exception Course: Command failed

e ATCS sends the (alpha,delta) offset to the axes by Offset Alpha/Delta

Exception Course: Command failed

e ATCS updates telescope position
Exception Course: Command failed

e ATCS returns OK reply

Exception Course: Command failed

e ATCS returns ERROR reply

Postcondition: ATCS state ONLINE TRACKING

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 62 of 83

Postconditions: These are postconditions that validate the goal of the use case.
e Alt/Az axis are offset of the (alpha,delta) amount
e Telescope position is updated

Issues to be Determined or Resolved:

Notes:See TCS for UTs
Last modified: Mon Jul 3 14:37:08 METDST 2000

6.3 Use Case: Set Nasmyth Wheel

Description: Set Nasmyth wheel to required position

This action is dedicated to optical alignment procedures and is therefore not foreseen to be used during
normal operation

where the Nasmyth wheel shall be set to the specific position allowing the telescope beam to reach M9.
The allowed positions are:

e Flat Retro-Reflecting Mirror
e Free Hole
e 2 positions for Alignment Tools (optical fibres or other dedicated devices)

The Observation mode position is the Free Hole, whereby the device shall be switched Off.
On the Alignment Tool positions, it is possible to chop the wheel between 2 close positions of a given
stroke.

Use Case Type: Concrete

Role(s)/Actor(s):
Primary: Maintenance
Secondary: Nasmyth sub-system

Priority: Major

Performance:
less than 10 seconds for motion to a predefined position;
less than 1 second for chopping on Alignment Tool positions.

Frequency: During optical alignment procedures only, typ. before and after alignment procedures.
Preconditions:

e Nasmyth Wheel is ONLINE

Basic Course: Motion to a predefined position

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 63 of 83

e Send command SETPATH <FREE|RETRO |TOOL1 |TOOL2> to set the Nasmyth wheel to given
predefined position
Exception Course: Command failed

ATCS gets actual Nasmyth Wheel position
L. Exception Course: Command failed
Subflow: Nasmyth Wheel on position TOOLn

[]
e ATCS sends command to Nasmyth Wheel device
L Interface: IfNasmythWheel Motor

Exception Course: Command failed

e ATCS returns OK reply

Subflow: Nasmyth Wheel on position TOOLn

e ATCS switch off Nasmyth Beacon #n
Exception Course: Command failed
Postcondition: Nasmyth Beacon #n switched off

Alternate Course: Chopping on Alignment Tool position

e Send command SETPATH <TOOL1|TOOL2>,<stroke> to chop the Nasmyth wheel of a given
stroke off the specified Tool position
Exception Course: Command failed

e ATCS sends command to Nasmyth sub-system
L Interface: IfNasmythWheel Motor

Exception Course: Chopping stroke >= 30mm
Exception Course: Command failed

e ATCS returns OK reply

Exception Course: Command failed

e ATCS returns ERROR reply
Postcondition: Nasmyth wheel not moved

Exception Course: Chopping stroke = 30mm

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

64 of 83

e ATCS returns ERROR reply
Postcondition: Nasmyth wheel not moved

Postconditions: These are postconditions that validate the goal of the use case.

e Nasmyth wheel at given position

Issues to be Determined or Resolved:

Notes:
Last modified: Mon Jul 3 14:33:28 METDST 2000

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 65 of 83

7 APPENDIX C: Interface Control Document example

7.1.1

Nasmyth wheel

Control of the position of the wheel, including motor, tachometer, encoder and limit switches.
This 4-element device consists of a Flat Retro-Reflecting mirror, a Free Hole and 2 positions
for dedicated Alignment Tools (2 light beacons, half-masks).

The motor and tacho are connected to the ESO standard VME4SA Servo Amplifier and the
encoder to the MAC4 Motion Controller. The tacho generator is mounted on the motor. The
velocity loop is closed in the amplifier. There are two switches: one of them is used as a
reference switch.

O w»n=

Control of the 2 Image Beacon Light Sources in one of the dedicated Alignment Tools
(they are fed into a single optical fibre).

The control is deployed on the Altitude LCU.

The device is connected to the Terminal Block X3.

< =3 O (@R N |

The motor control is a pure SW interface: the target position and velocity are passed to the Motion
Controller via the VME bus. The motor control software is provided by ESO.
The functionalities to be provided are:

Set absolute position of Nasmyth wheel axis

Set to Retro-Reflecting mirror

Set to free hole

Set 1st Alignment Tool position (Beacon)

Set 2nd Alignment Tool position (Halfmasks)

Chop Nasmyth wheel with a given stroke and frequency

Nasmyth wheel interfaces:

Item |From| To Signal Description Pin

MOTOR: Minimotor DC Brush 3557-024CS

24VDC, 30W
1 LCU |ATS |Motor power + VME4SA Servo Amplifier Channel #1 X3 1
2 LCU |ATS |Motor power - VMEA4SA Servo Amplifier Channel #1 X3 2
3 Shield (X3-1 - X3-2) X3 3

ALMA

SE Practices Software
Development Process
Methodology and Tools

Doc:

Issue: 1.0

Date: 2000-07-28
Page: 66 of 83

ALMA-PRO-ESO-xxxxX-XXXX

TACHOGENERATOR: Minimotor 4.3 G60

4.3mV / rpm
4 ATS |LCU |Tacho output + VME4SA Servo Amplifier Channel #1 X3 4
5 ATS |LCU |[Tacho output - VME4SA Servo Amplifier Channel #1 X3 5
6 Shield (X3-4 - X3-5) X3 6
ENCODER: Minimotor Optical HP HEDL 5540-500
5 VDC - 500 counts/turn - Resolution = 250 counts/degree = 14.4"/count
7 LCU |ATS |Encoder power + MAC4-INC Motion Controller Channel #1 X3 16
8 LCU |ATS |Encoder power - MAC4-INC Motion Controller Channel #1 X3 17
9 Shield (X3-16 - X3-17) X3 18
10 ATS JLCU {Encoder A+ ll\j/fgérj—riﬁé lll\;llzt(iiglrjgoﬁz;oller Channel #1 X3_7
1 ATS JLCU [Encoder A- B{lif(e:rfi;aé lll\;llf)tcil(r)ggoﬁt-roller Channel #1 X3_8
12 Shield (X3-7 - X3-8) X3 9
13 ATS JLCU - [Encoder B+ B{lif(e:rfi;aé lll\;llf)tcil(r)ggo?lttoller Channel #1 X3_10
14 ATS JLCU {Encoder B- ll\j/fgérj—riﬁé lll\;llzt(iiglrjgo?l;roller Channel #1 X3_11
15 Shield (X3-10 - X3-11) X3 12
16 ATS JLCU {Encoder Z+ ll\j/fgérj—riﬁé lll\;llzt(iiglrjgoﬁrroller Channel #1 X3_13
17 ATS JLCU [Encoder Z- B{lif(e:rfi;aé lll\;llf)tcil(r)ggoi;roller Channel #1 X3_14
18 Shield (X3-13 - X3-14) X3 15
SWITCHES: Micromat KS35A11
24V, 4A max. - Repeatability=0.03 degrees
19 ATS |LCU |Reference & Negative switch + MACA4-INC Motion Controller Channel #1 X3 19
20 ATS |LCU [Reference & Negative switch X3 20
Common MAC4-INC Motion Controller Channel #1
21 Shield (X3-19 - X3-20) X3 21
22 ATS |LCU |[Positive Limit Switch + MACA4-INC Motion Controller Channel #1 X3 22
23 ATS |LCU [Positive Limit Switch Common X3 23
MAC4-INC Motion Controller Channel #1
24 Shield (X3-22 - X3-23) X3 24
25 Global shield (X3-1 - X3-24) X3 25

SE Practices Software Doc: ALMA-PRO-ESO-XxXXX-XXXX
A I M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 67 of 83
Nasmyth Beacon light sources interfaces:
Item |From| To Signal Description Pin
IMAGE BEACON LIGHT SOURCES:
S 100 JLCU JATS |Switch Image beacon light source [contact closed to switch on image beacon light
#1 on/off source #1 TBD
o Digital Output
0O (101 JATS |LCU |[Image beacon light source #1 contact closed means light source #1 switched on TBD
n status Digital Input
1 102 JLCU JATS [Switch Image beacon light source [contact closed to switch on image beacon light
y #2 on/off source #2 TBD
Digital Output
103 |ATS |LCU |[Image beacon light source #2 contact closed means light source #2 switched on TBD
status Digital Input

Last modified: Wed Sep 8 17:12:10 METDST 1999

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 68 of 83

8 APPENDIX D: Package template

8.1 Package: XXX

Description: Description.

Package name: xxx

Inheritance: NONE. This is NOT a standard package
Deployment: Control Workstation|]LCU: xxxControl process.

Use Case diagram:

Insert here the Use Case Diagram

Class diagram:
Insert here the Class Diagram

Architecture:

Reuse from VLT TCS: 90%

Issues to be Determined or Resolved:

Last modified: Tue Apr 18 09:40:31 METDST 2000

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 69 of 83

Package:

A general purpose mechanism for organizing elements into groups. Packages may be nested within
other packages. Both model elements and diagrams may appear in a package.

At implementation level, packages are mapped to VLT software modules, kept under configuration
control in the VLT software archive.

A package can be:
e subsystem software
e coordination software

e interface software

Description:

Provide a sentence or short paragraph that clearly defines the purpose or goal of the Package.

Package name:

The package is uniquely identified by a name. The name of the package is used as the prefix of the
correspoding VLT software module.

Inheritance:

Inheritance is the mechanism by which more-specific elemtes incorporate the structure and behaviour
of more-general elements.

For the current package it shows the list of packages where their structure and behaviour is inherited.

Deployment:

Shows the nodes of the system's hardware topology on which the package is executed. It adresses the
static view of the system.

For each package the concerned LCUs and server processes are listed.

Use Case diagram:

Shows the Use Cases that the package is responsible for, and that are completely executed within the
package.

Class diagram:

The class diagram shows a set of classes, interfaces, and collaborations and their relationships. It
illustrates the static design view of the system.

Each Package consists of a set of classes that are shown in the diagram.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 70 of 83

Architecture:

The Package Architecture describes the basic design concepts of the package.

Reuse from VLT TCS:

Gives an estimation of the re-usability of existing VLT TCS code, in the view of needed ATCS code.

Issues to be Determined or Resolved:

List any issues that remain to be decided, or to be reviewed regarding this Package. These issues may
include scope of the Package, task description, or user interface.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 71 of 83

9 APPENDIX E: Package description

9.1 Package: Nasmyth Focus Device

Description: Control of the Nasmyth Focus related devices, like Nasmyth Wheel and the Nasmyth
Beacon.

Package name: nfd
Inheritance: LCU Server Framework <<SubSystem>>1sfSERVER

Controlled HW Devices:

e <<Device>>nfdWHEEL:1sfMOTOR
e <<Device>>nfdBEACON:1sfDIGITAL

Controlled SW Devices: none

Deployment: Altitude LCU: nfdServer

Use Case diagram:

<<Coordination>>
OPT el f
nstanciations o
(from OPT) the User role
<<message>> %;{
SETPATH
=
v /// Set Nasmyth Wheel Nasmyth Wheel
f N th Devi
- (from Nasmyth Device) (from Actors)
\ <<in¢lude>>
Xmessage»
User SETNBEN._ ¢
~—_ VvV
(from Actors) ’g/ J W :
{ %
N
Switch On/fo Nasmyth Beacon Nasmyth Beacon
Light Source

Light Source

(from Nasmyth Device) (from Actors)

Class diagram:

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 72 of 83
<<Coordination>>
OPT
(from OPT)
O <<SubSystem>>
ji > NFD
User
(from Actors)
<<SubSystem>>
nfdServer
<<Device>> <<Device>>
nfdBeacon nfdWheel
J N
Nasmyth Beacon Nasmyth Wheel

Light Source

(from Actors) (from Actors)

Architecture:

This Software Device is instantiated from the LCU Server Framework 1s£.

The sub-class <<SW Device>>nfdSERVER:1sfSERVER is composed of an instance of the motor
class <<Device>>nfdWHEEL: 1s£MOTOR and of one instance of the digital signal class
<<Device>>nfdBEACON: 1sfDIGITAL.

SE Practices Software Doc: ALMA-PRO-ESO-XXXXX-XXXX
AI M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 73 of 83
<<SubSystem>>
LCU Senver
(from LCU Server)
ommand Interpreter
<<SubSystem>>
Y nfdServer
NFD Command Interpreter
SSETNBCN() -
SGETNBCN() <<Device>> <<Device>>
‘SETPATH() Digital /O Signal Motolr
SGETPATH() (from Devices) (from Devices)
\
<<Device>> <<Device>>
nfdBeacon nfdWheel
Digral Signal Data otor Data

(F—

fdBeaconData

O

SETNBCN

35

<<bind>> <<bind>>
(SetPath)

(SetBeacon)

| NP
<<bind>>
(GetBeacon)

Nasmyth Beacon
Light Source GETNBCN

(from nfdBeacon)

S<<API>> nfdGetBeacon()

SETPATH

<<bind>>
{GetPath)

Command Handler

)

nfdWheelData

Nasmyth Wheel
GETPATH

The Software Device nfdServer provides the following Specific Commands for the control of the

Nasmyth wheel:

and one Specific Command for the control of the 2 beacons:

e SETNBCN: switch On and Off the beacons.

Command SETPATH / GETPATH

SETPATH and GETPATH: to set and get the wheel position.

SE Practices Software Doc:
AL M A Development Process Issue:
Methodology and Tools Date:

Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

74 of 83

These commands are transient instances resp. of the classes:
<<Control>>nfdSETPATH: 1sfCOMMAND HANDLER and
<<Control>>nfdGETPATH: 1sfCOMMAND HANDLER.

They invoke the inherited method 1s£MOTOR: : setPosition (char *name[], v1tDOUBLE

offset[]) and 1sfMOTOR: :getPosition():

Sequence diagram:

A O O O

X O

. :SETNBCN
:User . NED Command Interpreter . SETPATH : nfdWheelData - Nasmyth Wheel ——===x=
| | | | | |
. SETPATH() _, 1 1 1 1
‘%‘ InfdSetPath() : : : :
| | | | | |
| | nfdSetPath() l | 1
l l < l l l
| | | |
! ! IsfGetState() Reject request if ! !
| | \ZI Moving | |
: : IstFtSubStageLL - - ‘ : :
| . \% | | |
| Switch off Beacon #n | | | |
‘ when moving off ‘ nfdGetBeacon() | -
| position TOOL#n L | | | |
| T - - | | |
I I I ~ T~ ---__infdSetBeacon() ! I
| | L [| ~
| | | | | |
| |)]] |
: : : setPosition() : : :
			MCM	
		>		
		L		
SUCCESS P —

ok« |
< |

|

|

|

|

|

Activity diagram:

SE Practices Software Doc:

ALMA-PRO-ESO-xXXXX-XXXX
Development Process Issue: 1.0
Methodology and Tools Date:
Page:

2000-07-28
75 of 83

Motor

check state

[state 1= ONLINE]

|

check sub-state “\
[sub-state= oving‘q

|
check path

[illegal path name] \
see LSF Motor

setPosition() (- nfdGetPath()

check actual path

[actual path=TOOL #n]

nfdSetBeacon
(n,OFF)

<

\
< setPosition(:

/
murn /~ Log the Error >
_ SUCCESS > PN

&
L)

/ Return
FAILURE

The Nasmyth wheel is intended to be used mainly for optical alignments, thus only the position mode
is relevant here. The positions are accessible via their names (see MCM Named Positions) to which an
offset may be added as required (only for both alignment tools):

e FREE: Free hole.

RETRO: Flat retro-reflecting mirror.
[]

TOOL1: Alignment tool #1.

SE Practices Software Doc:
AL M A Development Process Issue:
Methodology and Tools Date:

Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

76 of 83

e TOOL2: Alignment tool #2.

The default (observation) position is FREE.

Command SETNBCN

This command is a transient instance of the class
<<Control>>nfdSETNBCN:1s fCOMMAND_HANDLER.

This command invokes the inherited methods 1sfDIGITAL: : setSignal () and

1sfDIGITAL: :getSignal ():

Sequence diagram:

x O O O

2 O

User ~NFD Command Interpreter -SETNBCN :nfdBeaconData . NasmythBeacon ~GETPATH
Light Sourc

| | | | | |
| SETNBCN() | | ! ! !
: > ‘ InfdSetBeacon() : : : :
| I | | | |
: : nfd$etBeacon() : : :
l l < l l l
| | | | | |
! ! Isﬁ‘GetState() ! ! !
l l l | nfdGetPath() l
| | L | | ~J
| \[path!=TOOL#n]:FAILURE < 1 1 |
| ErrOR Pt ' ‘ ‘ ‘ ‘
	,			
	7			
L	.			
! Reject request to switch on i getSignal()				
Beacon #n, if actual path ! >				
: is not TOOL #n F : : :				
: : : setSignal() : : :				
		>		
l l SUCCESS < < l				
OK = !				

|

|

|

|

|

|

I

Activity diagram:

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

77 of 83

Digital Signal

/" getSignal \é/

check state

[state I= ONLINE]

[error]

(beacon#n) /

(

[path=TOOL #n]

setSignal

[actual != new]

/" nfdGetPath() >

check signal state

check path

[error]

[error]

(beacon #n)

S

/\L\
L)

e

Return
SUCCESS

(Log the Error ™\

Return
FAILURE

) L

Two beacons are available that can be controlled individually giving their number associated to the
actual Nasmyth Wheel position (TOOL1 or TooL2). None of the beacons shall be switched on when the
wheel is not in one of these 2 positions. The beacons are switched off automatically whenever the
wheel is moved to the positions FREE or RETRO. The default (observation) signal states are OFF.

Command Definition Table: nfdServer.cdt

Command Interpreter Table: nfdServer.cit

Reuse from VLT TCS: New package

SE Practices Software

AL M A Development Process
Methodology and Tools

Doc:

Issue:
Date:
Page:

ALMA-PRO-ESO-xxXXX-XXXX
1.0

2000-07-28

78 of 83

Issues to be Determined or Resolved: None

Last modified: Fri Mar 31 13:18:46 METDST 2000

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 79 of 83

10 APPENDIX F - Checklists

Checklists[10] are used to guide the examination of the diagrams for syntax problems.
Hereafter are checklists defined that contain items specific to s specific development phase.

UML Detailed Design Checklist ‘

Question Yes | No

Analysis-to-design model issues

Are all classes in the analysis Model that are not in the design model outside the scope
of the application?

Are all states in the analysis model statecharts also states in the statechart diagrams in
the design model?

Are the sequences of messages in all design-level sequence diagrams the same, even
though additional messages may have been between the analysis-level messages?

Internal design model issues

Are all associations shown with no navigation information truly bi-directional?

Are all composition relationships shown as unidirectional?

Is every sequence diagram a subset of some activity diagram?

Does every message sent in an interaction diagram appear as a method in the public
interface class of the receiving object?

Are the transitions out of a state in the state diagram mutually exclusive?

Do all state machines, except for perpetual objects, contain initial and final states?

Are all public modifier methods represented as transitions on each state even if they
only result in a self-back loop?

Is there a sequence diagram for each postcondition clause of each method that
corresponds to use cases that meet the frequency/criticality threshold?

Are all messages shown correctly as synchronous or asynchronous?

Do they number of forks and joins balance in every activity diagram?

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 80 of 83

Testability Checklist Items ‘

Question Yes | No

Are all use cases written in sufficiently specific language to support the writing of test
cases?

Do all of the methods in the domain model have complete signatures?

SE Practices Software Doc: ALMA-PRO-ESO-xxxxX-XXXX

AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 81 of 83

11 APPENDIX G - Frequently asked Questions

This section answers frequently asked questions related to the use of UML, ROSE or RUP that are not
covered by literature.

1.

How should I use the component view to map the logical view?

A component does realise a class, but the meaning of realise is context sensitive. Also a task is a
component that is an independent thread of control. A source code file is a good realisation of a
class but a task (thread of control) is not a good realisation of a class. (Rose does allow this
mapping).

What you should model is:

Class X is realised by component X.h and X.cpp. Component (task) XYZ.ocx is dependent on
X.cpp Y.cpp and Z.cpp. Component ABC.exe is dependent on XYZ.ocx..

Now component ABC may have many independent tasks (threads of control, FORKSs) some of
which could be instances of XYZ. Modeling of this should be done in deployment diagrams (not
supported by rose).

How to represent iterations (loops) in sequence diagrams

An asterisk (*) before the operation signature represents an unspecified number of iterations. An
asterisk followed by a condition such as *[i:=1..n], represents a variable and specified number of
iterations.

If you have several operations at the same level of nesting, some of which are part of a loop, this
loop can be represented by a constraint, as shown in Figure 6.

SE Practices Software Doc: ALMA-PRO-ESO-xXXXX-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28
Page: 82 of 83
: ClassA : ClassB : ClassC

actlon() ‘
|

*action():retValue

—

[retVE uel= 0] doit()

:get():value

number of times.

——|do it an unspecified ﬁ

— doitntimes

do it an unspecified
number of times and save
return value of call

—| execute doit(0 only if
retValue is not zero

[value = 1]

|
|
|
|
f
|

/

:get():value

/

/

return if value
becomes 1

\’\\
|
|
|
T
|
|
|
|
|
|

|
|
|
|
|
|
ﬁ
|

Figure 6 - constraints in sequence diagrams

3. How can I represent Packages in class and sequence diagrams?
Since Rose does not support associating classes and packages, create in each Package a class with
the name of the package. Use this class as a representative of the package in other diagrams.

SE Practices Software Doc: ALMA-PRO-ESO-xxxxx-XXXX
AL M A Development Process Issue: 1.0
Methodology and Tools Date: 2000-07-28

Page: 83 of 83

000

