The noise is supposedly Poissonian (in electrons, not in counts). Hence it is easier to transform counts to electrons to compute the sigma of the noise. Naming convention: Ip means image in pixel space, i.e. where the values are in counts; Ie instead is the corresponding image where values are in electrons. Remember simple formula: if y = k * x then var(y) = k2 * var(x) Single image I: Poisson => var(Ie) = Ie = g * Ip Hence: Ip = Ie / g and var(Ip) = var(Ie) / g2 = Ip / g Eff. Gain := g
Coadded images T = sum( Ii ):

     Poisson =>   var(Te)   =   Te   =   sum( Iei )   =    g * sum( Ipi )   =   g * Tp

     hence: => 

        Tp = Te / g   
        var(Tp)   =   var(Te) / g2   =   Te / g2   =   Tp / g

     Eff. Gain := g

Averaged image M = sum( Ii ) / N :

Here though the poissonian statistics cannot be applied to sum( Iei ) / N !

In fact, the poissonian statistics applies to the total number of electrons.

     Poisson =>   var(Te)   =   Te   =   sum( Iei )    =    g * sum( Ipi )    =   g * N * Mp

                     T = N * M
     Poisson =>   var(Te)   =   Te
      Hence
                     var(N * Me)   =   N * Me

                     N2 * var(Me)   =   N * Me

             (1)     var(Me)   = Me / N

       and since
             (2)     Me = Mp * g

             (3)     var(Me) = var(Mp) * g2

       given 1,2,3:

                     Me / N = Mp * g / N = var(Mp) * g2

                     var(Mp) = Mp / ( N * g )


     Eff. Gain := N * g