# Type la supernovae in the near-infrared: nickel all over

Bruno Leibundgut Suhail Dhawan Jason Spyromilio Kate Maguire







#### The promise of the (near-)infrared

- Extinction is much reduced in the near-IR
  - $-A_H/A_V \approx 0.19$  (Cardelli et al. 1989)
- SNe la much better behaved



#### Others find this too

 Light curves in the near-IR very uniform at peak, but large differences at later times



SN 2006mr SN 2005ke SN 2007on Kattner et al. 2012



# Large literature sample

- Scatter minimal at first maximum in Y (1.04μm), J (1.24μm), H (1.63μm) and K (2.14μm)
- ~90 objects in J and H
   58in Y, 22 in K
- Mostly Carnegie SN
   Project data
   (Contreras et al. 2010,
   Stritzinger et al. 2011)

Dhawan et al. 2014



# Infrared light curves



#### NOT after maximum



# Late decline (t>40 days)





#### Correlations

Phase of the second maximum appears to be a strong discriminator among SNe la



#### Correlations

Luminosity of late decline and the phase of the second maximum are linked





# Correlations with the optical

- IR properties correlate with optical decline rate
- Phase of secondary maximum strongly correlated Δm<sub>15</sub>



# Correlation with optical colour

Phase of second maximum and beginning of the Lira relation are also tightly linked





# Consistent picture emerging

- Second peak in the near-IR is the result of the recombination of Fe++ to Fe+ (Kasen 2006)
  - he predicted a later second maximum for larger Ni masses
- Optical colour evolution faster for objects with lower nickel mass
  - (Kasen & Woosley 2007)
- Ejecta structure uniform
  - late declines very similar
- → higher luminosity indicates a higher Ni mass
- → later secondary peak also indicates higher Ni mass
- → Ni mass and (optical) light curve parameters correlate (Scalzo et al. 2014)

# Nickel masses directly?

- Correlate phase of second maximum with observed nickel masses
  - avoid 'detour' through optical light curve shape parameter ( $\Delta m_{15}$ )





## Absorption-free subsample

- Select SNe with E(B-V)<0.1</li>
- Pseudo-bolometric light curves (UBVRIYJH)



Dhawan et al., in prep

#### Nickel masses

- Using a timing parameter for nickel masses
  - completely independent on reddening and multiple light curves
- Explore different methods to calculate the nickel mass (currently still all Chandrasekhar-mass progenitors



Dhawan et al., in prep

## Summary

- Nickel seems the dominant parameter for the light curves of SNe Ia
  - phase of second maximum, start of uniform B-V colour evolution (Lira law), optical light curve shape ( $\Delta m_{15}$ ), luminosity of the late decline phase
- Second maximum in the IR light curves strong parameter for SN Ia characterisation → simple way to measure nickel mass