Different views on nucleosynthesis and excellence

Bruno Leibundgut

Inside vs. Outside

- γ-rays
 - direct detection of nuclear decays
 - direct measurement of Ni mass
 - distribution of radioactive material
- Optical ("bolometric")
 - energy balance
 - Arnett's rule \rightarrow Ni mass
 - indirect inference of energy source
 - complication: radiation transport
 - direct detection of atomic transitions

The Gospel

652 DIEHL & TIMMES

GAMMA-RAY EMISSION FROM RADIOACTIVE ISOTOPES 651

Expectations

 Calculations from different explosion models

2.0

1.5

1.0

0.5

0.0

Expectations

Searching – SN 1991T

- 2nd brightest SN Ia since SN 1972E (SN 1986G was slightly brighter, but heavily extinct)
 – first COMPTEL SN
 - discovered one week after launch of the Compton Gamma-Ray Observatory

Searching – SN 1991T

- Complication
 - 3C273 at only 1.4 degrees
 - PSF ~2 degrees

Morris et al. 1995

Searching – SN 1991T

Detection limits

-847 kev: $(5.3 \pm 2.0 \pm 1.6) \cdot 10^{-5}$ cnts s⁻¹cm⁻²

- -1238 kev: $(3.6 \pm 1.4 \pm 1.1) \cdot 10^{-5}$ cnts s⁻¹cm⁻²
- Unusually high Ni mass
 - $-M_{Ni} > (1.3 \pm 0.5) M_{\odot}$ for a distance of 13 Mpc
 - (actual distance 14Mpc Saha et al. 2006)
 - 'Unacceptable' in 1995?
 - Chandrasekhar-mass explosions
 - Super-Chandra's not part of 'main stream' yet

Searching – SN 1998bu

- Heavily obscured SN Ia
 - light echoes observed
- Upper limits on Co γ-rays
 - 847 keV: $3.1 \cdot 10^{-5} cnts s^{-1} cm^{-2} (2\sigma)$
 - 1238 keV: $2.3 \cdot 10^{-5} cnts s^{1} cm^{-2} (2\sigma)$

Searching – SN 1998bu

- Exclusion of some popular explosion models
- Inferred $M_{Ni} \le 0.35 M_{\odot}$ (11.9 Mpc)
 - Optical/NIR $M_{Ni} = (0.58 \pm 0.12) M_{\odot}$ (Dhawan et al. 2016)
 - derived 'reddening-independent'
 - Discrepancy due to γ -ray escape model?
 - explosion model, Ni distribution, photon transport
- Clear indication of importance of details in the explosions

Searching – SN 2011fe

- Nearest SN Ia since SN 1972E
 – Distance (M101): 6.4 Mpc
- Search for early Ni

 INTEGRAL observations pre optical maximum
- Exclude any surface nickel
- What about the late-time data? Published?

- Closest SN Ia in over 70 years
 M82: Distance 3.3 Mpc
- Heavily reddened

 First clear detection of cobalt decay lines

 Integration from 17 to 164 days after explosion

Temporal evolution

 Surprise – detection of Ni → Co decay lines 17 days after explosion
 – requires about 0.06 M_☉ nickel on the outside

- If Ni distributed uniformly, i.e. a shell
 line broading expected → not observed
- Radial symmetry needs to be broken

- indications on asymmetry in the explosion

So what about the outside?

- Very indirect
- Many more supernovae
- Much larger data samples
- Statistical anallses

Type la Supernovae

Radioactivity

Isotopes of Ni and other elements

 – conversion of γrays and positrons into heat and optical photons

Ejecta masses

Large range in nickel and ejecta masses

- no ejecta mass at $1.4 M_{\odot}$
- factor of 2 in ejecta masses
- some rather small differences
 between
 nickel and ejecta
 mass

Ejecta masses

Nickel masses

 Bolometric light curve analysis with 39 SNe la

SNe Ia in the NIR

Consistent picture emerging

- Second peak in the near-IR is the result of the recombination of Fe⁺⁺ to Fe⁺ (Kasen 2006)
- Uniform ejecta structure
 - late declines very similar

- higher luminosity indicates higher ⁵⁶Ni mass
- later secondary peak also indicates higher
 Fe/Ni mass
- Ni mass and (optical) light curve parameters correlate (Scalzo et al. 2014)

Luminosity function of SNe la

Use the phase of the second maximum to derive the bolometric peak luminosity

- calibrated on a sample of reddening-free SNe Ia
 - SNe with E(B-V)<0.1
 - pseudo-bolometric light curves (UBVRIYJH)
- apply to reddened objects

Luminosity function of SNe la

$M_{\rm Ni}$ (inferred)	σ	Method	Reference
0.62	0.13	γ ray lines	Churazov et al. (2014)
0.56	0.10	γ ray lines	Diehl et al. (2015)
0.37	• • •	Bolometric light curve $A_V = 1.7$ mag	Churazov et al. (2014), Margutti et al. (2014)
0.77	• • •	Bolometric light curve $A_V = 2.5 \text{ mag}$	Churazov et al. (2014), Goobar et al. (2014)
0.64	0.13	NIR second maximum	this work (combined fit)
0.60	0.10	NIR second maximum + measured rise	this work

- SN 2014J test passed
- Potential to determine the luminosity function and Ni distribution

Coda: SN 2014J

- Stable nickel detected
 - NIR nickel line at 1.939µm 450 days after maximum
 - Estimated $M_{Ni}(stable) \approx (0.53 \pm 0.018) M_{\odot}$

Excellence in 2016

Perspectives of nuclear astrophysics

- Influence of new and exotic phenomena on chemical evolution
 - reneutron star mergers
 - theoretically attractive
 - not observed/identified so far
 - massive explosions
 - superluminous supernovae
 - observed but not understood
 - pair-instability supernovae
 - predicted but not observed/identified
- →Complex formation histories have to be considered
- →Identification of single enrichment source becomes difficult/impossible

Research Area G

Roland's foresight (2016)

Perspectives of nuclear astrophysics

- Test of general relativity in strong gravitational field
 passage of S2 near the supermassive black hole at the MW center in 2018
 - detailed observations in preparation \rightarrow GRAVITY
- Gravitational waves from neutron star mergers
 Image beyond the reach of aLIGO/VIRGO → requires LISA
- Chemical evolution studies of stellar subgroups in the Milky Way
 - Gaia streams, stellar groups
 - In- and outflows into the Milky Way
 - pristine material vs. local enrichment
 - galactic fountains
 - evolution histories of spiral arms vs. bulge

Universe Cluster Science Week, Dec 5-9, 2016

Research Area G

Roland Diehl & Bruno Leibundgut

...and another one

Perspectives of nuclear astrophysics

- Multi-messenger astrophysics
 - neutrinos, gravitational waves, ultra-high energy radiation, cosmic rays
 - all related to high-energy events and processes
 - new facilities
 - IceCube, aLIGO/VIRGO, CTA, Auger
 - new connections
 - SFB 1258 "Neutrinos and Dark Matter"
- New views into planetary systems and their evolution
 w young disks, transition disks, debris disks, proto-planets
 - ALMA, infrared adaptive optics (VLT/SPHERE)
 - white dwarf chemistry
 - planetary material/higher elements on the surface of white dwarfs

Universe Cluster Science Week, Dec 5-9, 2016

Research Area G

'Universe' to 'Origins'

- Decided to leave a gap in the evolution from energy (early universe) to life
 – no nuclear astrophysics
- Exciting science topics need to be accommodated in other topics
 - multi-messenger astrophysics
 - gravitational waves, neutrinos
 - neutron star mergers, supernovae

Cosmic Nucleosynthesis Universe vs. Origins

Real Across the Entire Cycle of Matter: Nuclear Astro-Physics

