

Astrophysics for the Next Decade

Bruno Leibundgut

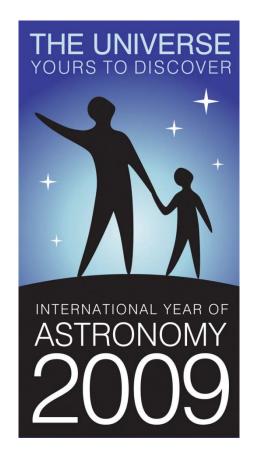
(ESO)

Astrophysics in a Golden Age

- Full coverage of electro-magnetic spectrum
 - MAGIC/HESS → Fermi/INTEGRAL → XMM/Chandra/Swift/Rossi
 XTE → Galex → HST/Gaia → ground-based optical/IR → Spitzer
 → Herschel → Planck → IRAM/JCMT/APEX/ALMA → radio
 telescopes
 - Large archive collections (e.g. ROSAT, ISO, ESO, HST, MAST)
- Astro-particles joining in
 - cosmic rays, neutrinos, gravitational waves, dark matter searches

Fantastic opportunities

Under Construction



Astrophysics in a Golden Age

- International Year of Astronomy
 - Fantastic boost in the public
 - Increased awareness
 - Strong public support
 - Continued interest
 - Connected to the 'big' questions
 - Where do we come from?
 - What is our future?

Science themes

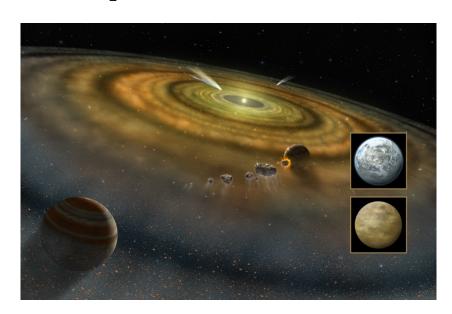
- What matters in the universe?
- Planets, planets
- How did stars and planets form?
- The Milky Way our Home
- Our own black hole
- How galaxies form and evolve?
- Fashions and other transients
- When opportunity knocks

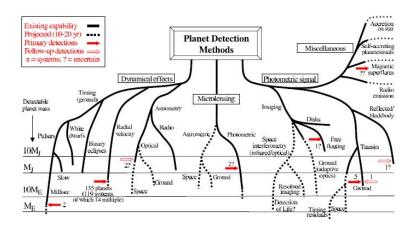
What matters in the Universe?

- Characterisation of dark matter and dark energy
 - Requires large samples
 - Multi-year and (often) multi-telescope projects
 - BAO (SDSS, 2dF, WiggleZ, BOSS, HETDEX)
 - Weak lensing (SNLS)
 - Supernovae (SNLS, ESSENCE, SDSS-II, SN Factory, LOSS, PanSTARRS, DES, LSST)
 - Galaxy clusters (REFLEX, NORAS, SPT, DES, eROSITA, LSST)
 - Redshift distortions (VVDS, VIPER)

Dark Energy

- Weak lensing, BAO, supernovae, clusters
 - Important: massive surveys and large sky coverage
 - Current state of the art with 4m telescopes (2dF, SDSS, WiggleZ, VIPERS)
 - ⇒ **EUCLID** → ground-based follow-up/calibrations
 - ⇒ spectroscopic calibration of the photo-z
 - ⇒ spectroscopic follow-up of supernovae
 - ⇒ spectroscopic follow-up for cluster members
 - ⇒ optical imaging for photo-z
 - ⇒ LSST, HETEX, LAMOST
 - ⇒ 8-10m telescopes
- Direct measurement of expansion dynamics
 - Important: high spectral resolution and stability

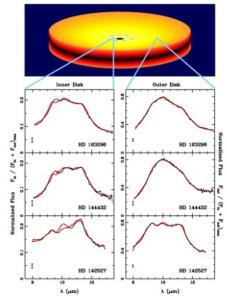

Davis et al. (2008)



Planets, planets

- Planets everywhere
 - Radial velocities
 - Direct imaging
 - Transits
- Characterisation
 - Planetary systems,masses,chemical composition,temperatures

Planets


- Radial velocities
 - Important: time series and high-resolution spectroscopy
 - complementary with space missions (CoRoT, Kepler)
 - Currently done with 1m to 10m telescopes
 - HARPS/HARPS-N, HIRES, UVES
 - ESPRESSO (VLT) and CODEX (E-ELT)
- Direct imaging
 - Important: spatial resolution and IR
 - large telescopes (>8m) with adaptive optics or interferometry (or space telescopes)
 - HST, NACO (VLT), NIRI (Gemini), Keck AO, SPHERE (VLT),
 GPI (Gemini), MATISSE (VLTI) and EPICS (E-ELT), JWST, ELTs
- Transits
 - Important: time series and accurate photometry
 - Mostly space missions (photometric stability) and long, uninterrupted time series (CoRoT, Kepler, PLATO)
 - Spectroscopy follow-up (HST, 4m to 8m telescopes)
 - OSIRIS (GTC)

How did stars and planets form?

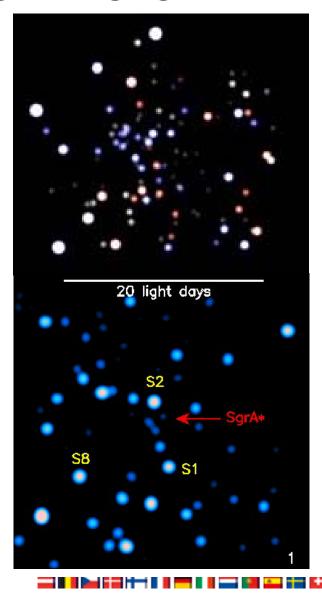
- Star formation shrouded in dust
 - Transition from absorbing cloud to selfluminous object
- Planetary and debris disks as cradles for planets
 - Chemical composition of disks
- Observations
 - Thermal IR, sub-mm and mm observations
 - Importance of spatial resolution

Star and planet formation

- Observing the warm cores of molecular clouds
 - Important: spatial resolution and large wavelength coverage
 - IR observations with large (>8m) telescopes,
 - CanariCam (GTC), VLTI (MATISSE)
 JWST, ELTs
 - ALMA will be the champion for this field

Volf & Klahr 2005

The Milky Way – our home


- Radial velocity study of 14000 F and G stars over two decades years
 - Plus photometry and Hipparcos parallaxes
- Spiral arms
 - Gas flows, stellar distribution
- Bulge composition, Galactic Centre
- Distribution of massive stars

Our own black hole

- Mass determination through stellar orbits
- Structure around the black hole revealed through flashes
- Coordinated studies with other wavelengths

Galactic Centre

- Determine the black hole event horizon
 - Schwarzschild radius ≈9 microarcseconds
- Measure gravity in the strong regime
 - Probing the spacetime geometry
 - Important: IR observations and spatial resolution → large telescope (>8m) with AO and interferometry
 - NACO, Keck-AO, GEMS (Gemini),GRAVITY (VLTI), ELTs

How did galaxies form and evolve?

- Characterisation of the Lyman-break galaxies
 - Galaxy population at z>3
- Discovery of compact, old galaxies at z>1
 - "red and dead", "red distant galaxies"
- Characterisation of galaxies at high z
 - Internal kinematics
- Earliest observable stellar agglomerations
 - Ly-α emitters

The distant universe

- Build up of the Hubble sequence
 - Star forming vs. passive galaxies
 - Important: deep wide-field imaging and massive spectroscopic surveys
 - ⇒ VST, VISTA, VIMOS upgrade,
 - Internal physics and morphologies of galaxies at 1<z<3
 - Important: high spatial resolution and spatially resolved spectroscopy
 - ⇒HST, NACO, SINFONI, OSIRIS (GTC), MUSE, KMOS, HAWK-I with AO, JWST, E-ELT
- Objects at very high redshifts ('first light')
 - Search for Ly-α emitters, IGM at high z
 - Important: deep surveys, spectroscopic follow-up
 - X-Shooter, NACO, OSIRIS (GTC), HAWK-I with AO, MUSE, KMOS, EMIR (GTC), JWST, E-ELT

Based on Bergeron (2009) Science with the VLT in the ELT Era

Fashions and other transient phenomena

- ESO top ten cited papers are all supernovae and GRBs
 - This is more a sign of fashion than sound physics
- AGNs topic of the 4m telescopes
 - Topic for 8m telescopes?
- Metal-poor stars originally 8m (e.g. First Stars programme)
 - And now?

When opportunity knocks

- Unique objects
 - SN 1987A
 - One in a century object?
 - Comets
 - Hale-Bopp, Hyakutake, 73P/Schwassmann-Wachmann 3, Shoemaker-Levy 9, Halley
 - Near-Earth objects
 - Solar system event
 - Spots on Jupiter
 - Volcano eruption on lo?
 - Formation of new large spot on Jupiter?

Wesley, 35cm

The telescope landscape

There are many large optical and infrared telescopes

Telescope diameter	In operation	Construction or Planned
d>10m	4	
7m < d < 10m	9	LSST
5m < d < 7m	6	JWST
3m < d < 5m	16	VISTA, LAMOST, Lowell

3 telescope planned with d>20m

Role of 8-10m telescopes

- Workhorses of optical/IR astronomy
 - Distributed resource
 - Access for many astronomers
 - Develop specific strengths
 - E.g. time series, large samples
 - Examples are the 4m telescopes over the past decade
 - AAT/2dF, CFHT/Legacy Survey, ESO 3.6m/HARPS, WHT/SAURON and PN.S

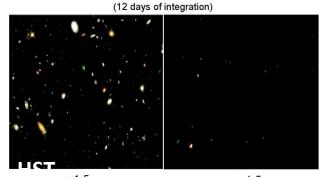
Complementarity

- Follow up of imaging surveys
 - UKIDSS, VST, VISTA, LSST/PanSTARRS
 - ESA Cosmic Vision → EUCLID/PLATO
- Follow up of sources detected at other wavelengths
 - Herschel, Fermi, XMM/Chandra, JWST, eROSITA
- ALMA/SMA follow-up/complement

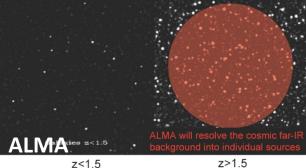
La Silla Paranal

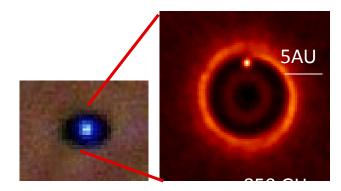
VLT

- Continue operations with new instruments
 - FORS2, ISAAC, UVES, FLAMES, NACO, SINFONI, CRIRES, VISIR, HAWK-I, VIMOS, X-Shooter, KMOS, AOF, MUSE, SPHERE
 - MIDI, AMBER, PRIMA, GRAVITY, MATISSE


La Silla

- Continue operations with long-term programmes
 - HARPS, EFOSC2, SOFI, visitor instruments




ALMA

- Science requirements
 - Detect CO and [CII] in Milky
 Way galaxy at z=3 in < 24 hr
 - Dust emission, gas kinematics in proto-planetary disks
 - Resolution to match Hubble,
 JWST and 8-10m with AO
 - Complement to Herschel
- Specifications
 - 66 antennas (54x12m, 12x7m)
 - 14 km max baseline (< 10mas)
 - 30-1000 GHz (10–0.3mm), up to 10 receiver bands

z<1.5 z>1.5 simulation 3 days of integration 4'x4' arcmin

E-ELT

- Detailed design study
 - Baseline 42m primary mirror
 - Adaptive optics built-in
 - Industry strongly engaged
 - Study complete in 2010
- Project
 - Builds on *entire* expertise at ESO *and* in the member states
 - Construction 2011-2018
 - Synergy: JWST/ALMA/SKA

