H_{0} and the never-ending story of the expansion rate of the Universe

Bruno Leibundgut ESO

Great Debate: What is the size of the Universe?

Presentations at the Annual Meeting of the National Academy of Sciences in Washington DC, 26. April 1920

Harlow Shapley vs. Heber Curtis

Models of the Milky Way

Jacobus Kapteyn (1922)

- based on stellar counts in selected areas
- Kapteyn contributed many stars in the southern hemisphere

Background

Expanding universe

\rightarrow expansion rate critical for cosmic evolution

Fig. 9. The Formulation of the Velocity-Distance Relation.

Leading Theory of the Universe

Dealing with an expanding Universe

Cosmic Distances
Separate the observed distances $r(t)$ into the expansion factor $a(t)$ and the fixed part x (called comoving distance)

$$
r(t)=a(t) x
$$

Friedmann Equation

Time evolution of the scale factor is described through the time part of the Einstein equations

Assume a metric for a homogeneous and isotropic universe and a perfect fluid

$$
\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}}=\frac{8 \pi G}{3} \rho(t)
$$

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & a^{2} & 0 & 0 \\
0 & 0 & a^{2} & 0 \\
0 & 0 & 0 & a^{2}
\end{array}\right)
$$

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
\rho c^{2} & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

Friedmann Equation

Put the various densities into the Friedmann equation

$$
\frac{\dot{a}^{2}}{a^{2}}=H^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k}{a^{2}}=\frac{8 \pi G}{3}\left(\rho_{M}+\rho_{\gamma}+\rho_{v a c}\right)-\frac{k}{a^{2}}
$$

Use the critical density $\rho_{\text {crit }}=\frac{3 H_{0}^{2}}{8 \pi G} \approx 2 \cdot 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}$
(flat universe),
define the ratio to the critical density $\Omega=\frac{\rho}{\rho_{\text {crit }}}$
Most compact form of Friedmann equation

$$
1=\Omega_{M}+\Omega_{\gamma}+\Omega_{v a c}+\Omega_{k}
$$

with $\Omega_{k}=-\frac{k}{a^{2} H^{2}}$

Dependence on Scale Parameter

For the different contents there were different dependencies for the scale parameter

$$
\rho_{M} \propto a^{-3} \quad \rho_{\gamma} \propto a^{-4} \quad \rho_{v a c}=\text { const }
$$

Combining this with the critical densities we can write the density as

$$
\rho=\frac{3 H_{0}^{2}}{8 \pi G}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3}+\Omega_{\gamma}\left(\frac{a_{0}}{a}\right)^{4}+\Omega_{\Lambda}+\Omega_{k}\left(\frac{a_{0}}{a}\right)^{2}\right]
$$

and the Friedmann equation

$$
H^{2}=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}\right]
$$

History of H_{0} Expansion rate by G. Lemaître (1927)

de l'observateur. En effet, la période de la lumière émise dans des conditions physiques semblables doit être partout la même lorsqu'elle est exprimée en temps propre.

$$
\begin{equation*}
\frac{v}{c}=\frac{\partial t_{2}}{\partial t_{1}}-1=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}-1 \tag{22}
\end{equation*}
$$

mesure donc l'effet Doppler apparent dû à la variation du rayon de l'univers. Il est egal à l'excès sur l'unité du rapport des rayons de l'univers à l'instant oú la lumière est reçue et à l'instant où elle est émise. v est la vitesse de l'observateur qui produirait le même effet. Lorsque la source est suffisamment proche nous pouvons écrire approximativement

$$
\frac{v}{c}=\frac{\mathrm{R}_{2}-\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{d \mathrm{R}}{\mathrm{R}}=\frac{\mathrm{R}^{\prime}}{\mathrm{R}} d t=\frac{\mathrm{R}^{\prime}}{\mathrm{R}} v
$$

où r est la distance de la source. Nous avons donc
Footnote!
(2) En ne donnant pas de poids aux observations, on trouverait 670 Km . sec a $1,16 \times 10^{6}$ parsecs, $575 \mathrm{Km} \cdot / \mathrm{sec}$ à 10^{6} parsecs. Certains auteurs ont cherché à mettre en

Intermezzo

Age of the Universe

 Matter-dominated universe has the following age| | $\mathrm{H}_{0}(\mathrm{~km} / \mathrm{s} / \mathrm{Mpc})$ | $\mathrm{to}(\mathrm{yr})$ |
| :---: | :---: | :---: |
| | 500 | $1.30 \cdot 10^{9}$ |
| $t_{0}=\frac{2}{3 H_{0}}$ | 250 | $2.61 \cdot 10^{9}$ |
| | 100 | $6.52 \cdot 10^{9}$ |
| | 80 | $8.15 \cdot 10^{9}$ |
| | 70 | $9.32 \cdot 10^{9}$ |
| | 60 | $1.09 \cdot 10^{90}$ |
| | 50 | $1.30 \cdot 10^{10}$ |
| | 30 | $2.17 \cdot 10^{10}$ |

- age of the Earth: $4.5 \cdot 10^{9}$ years
- oldest stars: $\sim 1.2 \cdot 10^{10}$ years

History of H_{0}

History of H_{0}

History of H_{0}

A. Riess

Expansion of the Universe

Luminosity distance in an isotropic,

 homogeneous universe as a Taylor expansion$$
D_{L}=\frac{c z}{H_{0}}\left\{1+\frac{1}{2}\left(1-q_{0}\right) z-\frac{1}{6}\left[1-q_{0}-3 q_{0}^{2}+j_{0} \pm \frac{c^{2}}{H_{0}^{2} R^{2}}\right] z^{2}+O\left(z^{3}\right)\right\}
$$

Hubble-
deceleration
jerk/equation of state
Lemaître Law

$$
H_{0}=\frac{\dot{a}}{a} \quad q_{0}=-\frac{\ddot{a}}{a} H_{0}^{-2} \quad j_{0}=\frac{\dddot{a}}{a} H_{0}^{-3}
$$

THE ABILITY OF THE 200-INCH TELESCOPE TO DISCRIMINATE BETWEEN SELECTED WORLD MODELS

Extragalactic Distances Required for a 3D picture of the (local) universe

Extragalactic Distances
 The Astronomical Journal, 146:69 (14pp), 2013 September

Courtois et al

Figure 8. Perspective view of the V8k catalog after correction for incompleteness and represented by three layers of isodensity contours. The region in the vicinity of the Virgo Cluster now appears considerably diminished in importance. The dominant structures are the Great Wall and the Perseus-Pisces chain, with the Pavo-Indus feature of significance.

Measuring H_{0}

Classical approach
\rightarrow distance ladder to reach (smooth) Hubble flow

Hubble Constant

Three different methods

1. Distance ladder

- Calibrate next distance indicator with the previous

2. Physical methods

- Determine either luminosity or length through physical quantities
- Sunyaev-Zeldovich effect (galaxy clusters)
- Expanding photosphere method in supernovae
- Physical calibration of thermonuclear supernovae
- Geometric methods, e.g. masers

3. Global solutions

- Use knowledge of all cosmological parameters
- Cosmic Microwave Background

Classical Distance Ladder

Primary distance indicators (within the Milky Way)

- trigonometric parallax
- proper motion
- apparent luminosity
- main sequence
- red clump stars
- RR Lyrae stars
- eclipsing binaries
- Cepheid stars

Pathways to Extragalactic Distances
Jacoby et al. 1992

Classical Distance Ladder

Secondary distance indicators (beyond the
 Local Group)

- Important check
- Large Magellanic Cloud
- Tully-Fisher relation
- Fundamental Plane
- Supernovae (mostly SN la)

Hubble Constant

Calibration of M(SN la @ max)

 Distance ladderPAST DISTANCE LADDER (100 Mpc)

NEW LADDER (100 Mpc)

Hubble Constant

Supernova la Hubble diagram

Riess et al. 2016

H_{0} with Supernovae

- Local calibrators (calibrate the Cepheid L-P rel.)
- Large Magellanic Cloud
- 1\% accuracy with eclipsing binaries
(Pietrzyński et al. (2019)
- Maser in NGC 4258
- 3\% accuracy (Humphreys et al. 2013)
- geometric distances (parallaxes) to nearby Cepheids
- Extinction
- absorption in the Milky Way and the host galaxy
- corrections not always certain
- Peculiar velocities of galaxies
- typically around 300 km/s

Gaia and H_{0}

- Calibrate Cepheid distances with parallaxes
- long-period Cepheids so far not accessible
- Single step to the SNe la
- reduced uncertainty on H_{0}
- Currently problems with systematic offsets between HST and Gaia (Riess et al. 2018)
- Discrepancy of (-46 ± 13) $\mu a s$
- Goal: uncertainty less than 1%

Type la Supernovae

Variations on a theme
 - critical parameters?

- nickel mass
- ejecta mass
- explosion energy(?)
- explosion mechanism?
- progenitor evolution?

Hubble Constant

SN Hubble diagram

The Promise of the (Near-)Infrared

- Extinction is much reduced in the near-IR
- $A_{H} / A V \cong 0.19$ (Cardelli et al. 1989)
- SNe la much better behaved

$$
\begin{aligned}
& \mathrm{SN} \quad \mathrm{~m}_{15}(\mathrm{~B}) \\
& \triangleleft=1980 \mathrm{~N}(1.29) \\
& \square=1986 \mathrm{G}(1.79) \\
& \triangle=1998 \mathrm{bu}(1.05) \\
& \times=1999 \mathrm{aw}(0.81) \\
& \ominus=1999 \mathrm{ee}(0.94) \\
& \nabla=2000 \mathrm{ca}(1.01) \\
& \diamond=2001 \mathrm{el}(1.15) \\
& \text { Krisciunas et al. }(2004)
\end{aligned}
$$ Mark Phillips

Current Status (NIR)

9 calibrators + 27 Hubble flow SNe

Infrared SN Hubble Diagrams

NIR Hubble diagram becoming competitive

Problem solved?

New discrepancy between the measurements of thi local H_{0} (distance ladder) and early universe (CMB)
Indication of an incomplete model of
 cosmology?

Promising Results from strong lensing

Time delays in lensed quasars

15 June 2020

Birrer et al. 2018

Gravitationslinsen HOLICOW collaboration

flat Λ CDM

(a) B1608+656

(b) RXJ1131-1231

(c) HE 0435-1223
(d) SDSS $1206+4332$

(f) PG $1115+080$

...and another attempt

Tip of the Red Giant Branch

Hubble Constant Over Time

Hubble Constant(s)

Planck satellite (CMB; 2018)
measurement at $z \approx 1000$

$$
H_{0}=(67.4 \pm 0.5) \mathrm{km} \mathrm{~s}^{-1} M p c^{-1}
$$

Riess et al. (local; 2016)

$$
H_{0}=(73.24 \pm 1.74) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Dhawan et al. (local; NIR; 2018) same zero-point as Riess et al. (2016)

$$
H_{0}=(72.8 \pm 1.6(\text { stat }) \pm 2.7(\text { syst })) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Riess et al. (local; 2018)

$$
H_{0}=(73.53 \pm 1.62) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Riess et al. (local; 2019)

$$
H_{0}=(74.22 \pm 1.82) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Freedman et al. (local, TRGB; 2019)

$$
H_{0}=(69.8 \pm 0.8 \pm 1.7) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Physical parameters of core collapse SNe

Light curve shape and the velocity evolution can give an indication of the total explosion energy, the mass and the initial radius of the explosion

Observables:

- length of plateau phase Δt
- luminosity of the plateau L_{V}
- velocity of the ejecta v_{ph}
- $E \propto \Delta^{4} \cdot v_{p h}{ }^{5} \cdot L^{-1}$
- $M \propto \Delta t^{4} \cdot V_{p h}{ }^{3} \cdot L^{-1}$
- $\mathrm{R} \propto \Delta \mathrm{t}^{-2} \cdot \mathrm{~V}_{\mathrm{ph}}{ }^{-4} \cdot \mathrm{~L}^{2}$

Expanding Photosphere Method

Modification of Baade-Wesselink method for variable stars

- Assumes
- Sharp photosphere \rightarrow thermal equilibrium
- Spherical symmetry \rightarrow radial velocity
- Free expansion

Kirshner \& Kwan 1974

Expanding Photosphere Method

$$
\theta=\frac{R}{D}=\sqrt{\frac{f_{\lambda}}{\zeta_{\lambda}^{2} \pi B_{\Lambda}(T)}} ; R=v\left(t-t_{0}\right)+R_{0} ; D_{A}=\frac{v}{\theta}\left(t-t_{0}\right)
$$

- R from radial velocity
- Requires lines formed close to the photosphere
- D from the surface brightness of the black body
- Deviation from black body due to line opacities
- Encompassed in the dilution factor ζ^{2}

Expanding Photosphere Method

- It's all in the data...

$$
\frac{\Theta}{v}=\frac{1}{D_{A}}\left(t-t_{0}\right)
$$

Preliminary Results

Consistent results

- not independent as local calibration required

Expanded Photosphere Method Reloaded

- Use individual atmospheric models for the spectral fits
- use of the TARDIS radiation transport model
- absolute flux emitted
- Accurate explosion date
- accurate zero point
- At least 5 epochs per supernova

Atmosphere Models

(c) 11 July 2005
(d) 14 July 2005

TARDIS fits for different epochs

Vogl et al. 2020

Distance Determination

Slope is inverse distance: $\frac{\Theta}{v}=\frac{1}{D_{A}}\left(t-t_{0}\right)$

Date	Time [d]	$\Theta / v_{\text {pi }}[\mathrm{d} / \mathrm{Mpc}]$
9 July 2005	12.25	1.69
10 July 2005	13.50	1.90
11 July 2005	14.50	2.12
14 July 2005	17.00	2.01
16 July 2005	19.40	2.44

adHOcc

"accurate determination of HO with core-collapse supernovae"

- Use the Expanding Photosphere Method to ~30 Type II supernovae in the Hubble flow ($0.03<z<0.1$)
- Independent of distance ladder
- no parallaxes, no Cepheids, no Type la supernovae
- FORS2 Large Programme over 3 semesters
- 6 epochs spectroscopy and photometry per supernova
- 8 SNe followed in first semester (P104)
- currently on hold
- SNFactory data
- about 15 SNe with $0.01<\mathrm{z}<0.05$

adHOcc

Critical observables

- time of explosion
- spectral coverage
- before max until well into the plateau
- photometry
- simulatenously to spectroscopy

Conclusions

Hubble constant sets absolute scale (and age) of the universe

- Past conflicts resolved
- Age of Universe is bigger than age of the Earth
- recognition of different stellar populations

- Age of Universe bigger than oldest stars
- cosmological constant

Conclusions

Current discrepancy of $\sim 4.4 \sigma$ between

- H_{0} measured locally (distance ladder) and
- H_{0} measured at $\mathrm{z}=1100$ (CMB)

Significance?

- systematics based on Cepheid calibration

Extreme accuracy required

- e.g. Cepheid parallax zeropoint

Independent measurement needed

- Expanding Photosphere Method

