Modern Cosmology

Bruno Leibundgut ESO/TUM Johannes Geiss Fellow 2019

Modern Cosmology

- The Universe yesterday
 - making elements
 cosmic microwave
 - background - universal expansion
- The Universe today
 - dark matter

- The Universe tomorrow
 detection of dark matter
 - equation of state of dark energing
 EUCLID
 neutrinos
 - gravitational waves

Entstehung des Universums

Faszination des Ursprungs: Die drei ersten Minuten vor rund 14 Milliarden Jahren waren bestimmend für unser Universum. Experimente der Weltraumwissenschaft ermöglichen uns Einblicke in die Tiefen von Raum und Zeit.

Publikationsorgan des Vereins Pro ISS

R. Wyttenbach

Birth, Age and the Future of the Universe

ESO

SN 1987

Recent results of space research tell us a story of unlikely events. Life emanating from the vaste of exploded stars is but one of them.

How do we observe the world?

The Earth at night

Our place in the universe

Our place in the universe

© Cassini/NASA

Our place in the Milky Way

1. January: Big Bang	The Milky	Way forms	Sun and planets form		Oldest known life	First multi-cellular organisms	
January Febru	ary Marc	ch April May	June July	August	September (October	November
December							
1	2	3	4	5	6	7	7
8	9	10	11	12	13	1	4
15 Cambrian Explosion	16	17 Emergence of first vertebrates	18 Early land plants	19	20 First four-lim animals	nbed V ii b f	21 /ariety of nsects begins to lourish
22	23	24 First dinosaurs appear	25 First mammalian ancestors appear	26	27 First known	birds 2	28
29 Dinosaurs wiped out by asteroid or comet	30	 31 23:54 Modern humans (homo sapiens) appear 23:59:45 Invention of writing 23:59:50 Pyramids built in Egypt 23:59:59 Galileo observes the sky with a telescope 					

Earth's atmosphere Shield and Window to the Universe

"visible"

"invisible"

SRG/eROSITA

IKI

"invisible"

Basics of cosmology

- Theory of gravity
 - Einstein's General Relativity
- Isotropy
 - There is no preferred direction
- Homogeneity
 - There is no preferred region
 - (e.g. no centre of the universe)
- Anthropic principle
 - We are a product of this universe

Our current picture of (the history of) the Universe

If you want to make an apple pie from scratch, you must first create the universe.

Carl Sagan quoted in Big Bang by Simon Singh (2004)

Why is this so?

- Elements form from elementary particles
- Quarks → protons and neutrons
- Electrons
- Protons and Neutrons form atomic nuclei
- Together with the electrons atomic nuclei become atoms

The First Three Minutes

STEVEN WEINBERG Winner of the 1979 Nobel Prize for Physics The First Three Minutes A Modern View of the Origin of the Universe, WITH A MAJOR NEW AFTERSORD BY THE AUTHOR

- Creation of particles and first elements in the Big Bang
- Protons and neutrons form after 0.0001 seconds
- Electrons after 4 seconds
- Deuterium (proton + neutron) after 2 minutes
- Helium (2 protons and 2 neutrons) after 3 minutes

Composition of the Universe

Cannot make an apple pie with this!

Special Bern Contribution

Cosmic and Solar System Abundances of Deuterium and Helium-3

J. GEISS Physical Institute, University of Bern

H. REEVES S.E.P. Saclay and Institut d'Astrophysique de Paris

Received December 30, 1971

 THERMAL HISTORY OF MATTER
 15

 4 He

 0.25

 0.22

From analysis of solar and solar wind abundances it is concluded that the D/H ratio in the protosolar gas was much smaller than it is found in ocean water or carbonaceous chondrites. Best estimates for the protosolar gas are: $D/H = 2.5 \times 10^{-5}$ and $He/H \leq 10^{-5}$. Isotopic enrichment of deuterium is thought to have

The D and He³

Reeves Alpbach 1987

abundances in the protosolar gas are consistent with a Big Bang origin of these nuclei, corresponding to a universal baryonic density of 3×10^{-31} g/cm³ (deceleration parameter $q_0 \approx 10^{-2}$) and zero leptonic number.

Fast forward 300000 years

First light in the universe

 photons decouple from the atoms

Why?

Free electrons are captured by the protons to form hydrogen atoms

Uncovering the Cosmic Microwave Background

Uncovering the CMB

Comparison with a familiar surface

How to interpret the image

The dark side of the universe

What is the universe made of? How do we understand the universe? What are Dark Matter and Dark Energy?

Gravitation!

Of the four fundamental forces (Gravitation, Electromagnetism, Weak and Strong Forces) only gravitation determines the evolution of the universe.

Measure gravitational influence

Orbits!

Why Dark Matter?

- The solar system can be fully understood with gravitation of a point source the Sun.
- Where does Dark Matter come into the game?
 - Clusters of galaxies
 - Rotation of galaxies
 - Gravitational lenses
 - Contents of the universe

The Sun within the Milky Way

The Sun orbits the centre of the Milky Way in about 220 million years.

Example: Galactic Centre

Discovery of Exoplanets

Radial velocities

- gravitational pull of a planet on the host star

Physics Nobel Prize 2019

Milky Way Rotation Curve

HELVETICA PHYSICA ACTA

EDITA A SOCIETATE PHYSICA HELVETICA

Die Rotverschiebung von extragalaktischen Nebeln von F. Zwicky. (16. II. 33.)

Um, wie beobachtet, einen mittleren Dopplereffekt von 1000 km/sek oder mehr zu erhalten, müsste also die mittlere Dichte im Comasystem mindestens 400 mal grösser sein als die auf Grund von Beobachtungen an leuchtender Materie abgeleitete¹). Falls sich dies bewahrheiten sollte, würde sich also das überraschende Resultat ergeben, dass dunkle Materie in sehr viel grösserer Dichte vorhanden ist als leuchtende Materie.

The Coma Cluster

Summary on Dark Matter

- Not measured in the solar system
- Dominates galaxy clusters (velocities, hot gas and gravitational lenses)
- Contributes significantly to the outer regions of galaxies
- Determines the evolution of large scale structure
- Is a possible explanation for the discrepancy between the nucleosynthesis in the Big Bang and the deceleration of the cosmic expansion

Why Dark Energy?

- The expansion of the universe should be slowed down by the gravitational attraction of matter
- Where does Dark Energy come into the game?
 - Expansion history of the universe
 - Curvature of the space compared to the measured matter density
 - Structure formation slowed down

Measuring the Hubble Constant *H*₀

Distance ladder to reach out into the Hubble flow

A modern Hubble diagram

The expansion is the same for all (Isotropy)

Cosmology with Supernovae

It is very difficult to measure distances in the universe. Supernovae are an essential tool to determine the expansion rate and its history Typ Ia Supernovae are excellent distance indicators calibrated in the nearby universe

The supernova Hubble diagram

Physics Nobelprize 2011

Saul Perlmutter Brian Schmidt Adam Riess

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

Summary

- Dark Matter and Dark Energy are part of the theory of gravity (Relativity) with opposite signs.
- Dark Matter is attractive like baryons ("us") and increases the gravitational potential.
- Dark Energy is a characteristic of space and acts as a repulsive force.

Hubble Constant

Calibration of the luminosity of SN Ia @ max)

PAST DISTANCE LADDER (100 Mpc)

1% # Modern, distant SNe Ia

3% # Modern, local hosts

3.5% SN la hosts, Metallicity change

4% long to short Period Cepheids

4.5% Ground to HST

5% Anchor: LMC

NEW LADDER (100 Mpc)

Adam Riess

Gravitational Lenses

H0LICOW collaboration

Problem solved?

New discrepancy between the near (distance ladder) and distant (microwave background) determinations of H_0

Summary

If the measurements are correct

- is either the cosmological model incomplete or
- it is wrong

Summary

• Big Bang Theory

- explains
 - early nucleosynthesis (deuterium, helium)
 - early radiation (cosmic microwave background
 - age of the universe
 - universe is older than the oldest stars
 - expansion
- does not explain
 - Inflation ("before the Big Bang")
 - Dark Matter
 - Dark Energy
 - problem with the Hubble Constant

