

adH0cc Local H_0 in one step

Status report Bruno Leibundgut on behalf of the adH0cc Team

adH0cc status

Measuring H₀

Classical approach

→ distance ladder to reach (smooth) Hubble flow

Classical Distance Ladder

Distance indicators

- trigonometric parallax
- apparent luminosity
 - main sequence
 - red clump stars
 - RR Lyrae stars
 - eclipsing binaries
 - Cepheid stars
- Galaxy relations
 - Tully-Fisher, Faber-Jackson

Pathways to Extragalactic Distances

Jacoby et al. 1992

– SNe la

H₀ Status

Bonvin and Millon https://doi.org/10.5281/zenodo.3635517

adHocc – Basics

 accurate determination of H₀ with corecollapse (supernovae)

• Individual distances (to about 10%) to Type II supernovae in the Hubble flow (0.03 < z < 0.15)

 Distance determination based on calibrated physics

– No distance ladder, i.e. no empirical calibration – Ideal for H_0

adHOcc – Basics Collaboration: MPA, ESO, TUM, LAM, GSI, QUB, Turku, Weizmann, EPFL Web page: https://adh0cc.github.io

adH0cc

accurate determination of H_o with core-collapse supernovae

We aim to determine the current expansion rate of the Universe, the so-called Hubble constant H_0 . To this end, we measure distances to Type IIP supernovae in the Hubble flow using the Tailored Expanding Photosphere Method.

This project is based on the ESO-VLT Large Programme 1104.A-0380.

Expanding Photosphere Method

Modification of Baade-Wesselink method for variable stars

- − Sharp photosphere
 → thermal equilibrium
- − Spherical symmetry
 → radial velocity
- Free expansion

Expanding Photosphere Method

$$\theta = \frac{R}{D} = \sqrt{\frac{f_{\lambda}}{\zeta_{\lambda}^2 \pi B_{\Lambda}(T)}}; R = \nu(t - t_0) + R_0; D_A = \frac{\nu}{\theta}(t - t_0)$$

- *R* from radial velocity
 - Requires lines formed close to the photosphere
- *D* from the surface brightness of the black body
 - Deviation from black body due to line opacities
 - Encompassed in the dilution factor ζ^2

EPM: it's all in the spectra

EPM improvements (C. Vogl)

Developed in Christian Vogl's thesis

- Individual fitting of each SN epoch
- Consistent parameters for the SN atmosphere
- Accurate explosion date from observations

adH0cc - Goal

- H_0 with 3% uncertainty
- Observe 12 SNe II with 0.04 < z < 0.1
 - 6 epochs spectroscopy and photometry
 - Explosion date known to $\pm 3 \ days$
 - 150 hours observing time with VLT/FORS2 over 1.5 years (\rightarrow 2 years with pandemic)
 - Elaborate observing scheme
 - Classification (ToO) \rightarrow first epoch (ToO)
 - \rightarrow second epoch (ToO)
 - \rightarrow three regular epochs (spread over 3 weeks)
- Complement existing data set
 - -20 SNe from SNFactory (0.01 < z < 0.04)

Type II Supernovae

Core-collapse explosions of massive, red-supergiant stars

- Peak absolute mags between -16 and -18 \rightarrow observable up to z \approx 0.4
- Most common supernova type by volume

3 November 2021

adH0cc status

la 24%

lbc

19%

II 57%

Why type II supernovae?

3 November 2021

adH0cc status

Expanded Photosphere Method Reloaded

- Use individual atmospheric models for the spectral fits
 - use of the TARDIS radiation transport model
 - absolute flux emitted
- Accurate explosion date
 - accurate zero point
- At least 5 epochs per supernova

Atmosphere Models

TARDIS fits for different epochs

adH0cc status

Slope is inverse distance: $\frac{\Theta}{v} = \frac{1}{D_A}(t - t_0)$

adH0cc status

adH0cc - Status

- Observations finished 1 October 2021
- 44 classifications
 - 26 SNe II, 12 SNe Ia, 6 other types (lbc)
 - One new type SN Icn (SN 2021ckj)
 - 20 SNe II with follow-up observations
 - Added another six objects not classified by us

adH0cc – Observations

3 November 2021

adH0cc – Observations

adH0cc - Status

- Data analysis workshop
 - 27 Sep 1 Oct at MIAPP
- Photometry
 - Requires template
 observations one year after SN
- Spectroscopy
 - Data reductions ongoing
 - Two independent data reductions

adH0cc - Status

Discussions of analysis

- Investigations of systematics
 - Peculiar velocities
 - Code comparisons
 - Contamination by galaxy light
 - Reddening
 - Circumstellar interactions
 - Asymmetric explosions
- Blinding procedures

adH0cc – Associated projects

- Calibrate Standardizable Candle Method (SCM)
 - Same data required
 - Replace external calibration through Cepheids and/or TRGB

- First SCM publication by Alexander Holas for the SNFactory data in preparation
 - Still based on Cepheid and TRGB calibrations

adH0cc – Associated Projects

- Sibling supernovae
 - Determine EPM distance to SNe II in the same galaxy
 - Internal consistency
 - Systematics
 - e.g. reddening
 - Internal scatter of the method

 Done for five of six suitable galaxies by Géza Csörnyei

 To be presented at SuperVirtual workshop

3 November 2021

adH0cc status

NGC 6946; AAS Nova

adH0cc – Associated Projects

- Calibrate SNe Ia with EPM distances
 - 'Siblings of a different kind'
 - Galaxies with a SN II and a SN Ia

Riess et al. 2016

adH0cc – Summary

- All data obtained
 - 26 SNe II with multiple epochs and good explosion dates
 - Analysis ongoing
- Individual distances to 10%
 - EPM of sibling SNe II independently check method
 - Statistical error well below 3%
- Systematics most critical