Cosmology with Supernovae

Bruno Leibundgut

Cosmology with Supernovae

- Fundamentals
- Observables
- Theory
- Supernovae as distance indicators
- Tests of General Relativity
- Time dilation
- Distance duality
- Hubble Constant H_{0}
- Mapping the expansion history $\left(q_{0}, \Omega_{M}, \Omega_{\Lambda}\right)$

Cosmic Distances

Separate the observed distances $r(t)$ into the expansion factor $a(t)$ and the fixed part x (called comoving distance)

$$
r(t)=a(t) x
$$

Calculating Distances

Simple example of distances in flat space:

- Coordinates x and y
- Distance: $d l^{2}=d x^{2}+d y^{2}$ (Cartesian)
- Coordinates r and θ
- Distance: $d l^{2}=d r^{2}+r^{2} d \theta^{2}$
- In general:

$$
\mathrm{d} l^{2}=\sum_{i, j=1,2} g_{i j} d x^{i} d x^{j}
$$

Cosmic Distances

In 4 dimensions

- (time as the $0^{\text {th }}$ coordinate) this becomes

$$
d s^{2}=\sum_{\mu, \nu=0}^{3} g_{\mu \nu} d x^{\mu} d x^{\nu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

using the (Einstein summation) convention where repeated indices are summed or explicitly:

- Minkowski (flat) space

$$
d s^{2}=\left(\begin{array}{llll}
c d t & d x & d y & d z
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c d t \\
d x \\
d y \\
d z
\end{array}\right)
$$

Calculating Distances

Expanding universe with scale parameter $a(t)$

$$
d s^{2}=\left(\begin{array}{llll}
c d t & d x & d y & d z
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & a^{2}(t) & 0 & 0 \\
0 & 0 & a^{2}(t) & 0 \\
0 & 0 & 0 & a^{2}(t)
\end{array}\right)\left(\begin{array}{l}
c d t \\
d x \\
d y \\
d z
\end{array}\right)
$$

\rightarrow Lemaître-Friedmann-Robertson-Walker (FRW) metric for an isotropic and homogeneous universe
$d s^{2}$ is proper space and the metric $g_{\mu \nu}$ is the conversion from the coordinates $d x^{\mu}$

Geodesic and Coordinate Transformation

Simple case:

- Minkowski space (flat):
- movement of a force-free particle (geodesic):
$\frac{d^{2} x^{i}}{d t^{2}}=0$, with $x^{i}=(x, y)$ (Cartesian coordinates)
- How does this look like in polar coordinates?

$$
x^{\prime i}=(r, \Theta) \Rightarrow \frac{d^{2} x^{i}}{d t^{2}} \neq 0!!!
$$

An everyday $r \theta z$ system

Geodesic

General equation of a freely moving particle

$$
\frac{d^{2} x^{\prime l}}{d t^{2}}+\Gamma_{j k}^{l} \frac{d x^{\prime k}}{d t} \frac{d x^{\prime j}}{d t}=0
$$

- Note the affine connection (Christoffel Symbol) $\Gamma_{j k}^{l}=0$ for Cartesian coordinates

Recap Einstein Equations

- Gravity is the dominant force in the universe \rightarrow General Relativity
- Need the most general form of the metric \rightarrow transformations between coordinate systems
- find 'invariant' parameters
- Equation of motion for a force-free particle ($\ddot{x}=0$) in GR leads to affine connections \rightarrow Christoffel symbols
- Putting this together with the geometry and the energy content \rightarrow Einstein Equations

Lemaître Robertson Walker Metric

Assumes homogeneity and isotropy

Line element in polar metric has angular and radial components

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right]
$$

$g_{00}=-1 ; \quad g_{r r}=\frac{a^{2}(t)}{1-k r^{2}} ;$
$g_{\theta \theta}=a^{2}(t) r^{2} ; \quad \mathrm{g}_{\phi \phi}=a^{2}(t) r^{2} \sin ^{2} \theta$

Light ray coming towards us

No angular dependence, hence

$$
c d t= \pm a(t) \frac{d x}{\sqrt{1-k x^{2}}}
$$

and integrated

$$
s=a \int_{0}^{x} \frac{d x}{\sqrt{1-k x^{2}}}=a S(x)
$$

with

$$
S(x)=\left\{\begin{array}{lr}
\arcsin (x) & k=1 \\
x & k=0 \\
\operatorname{arcsinh}(x) & k=-1
\end{array}\right.
$$

Strange Consequences

- $\mathrm{k}=1$
- closed universe
- distances increase and then decrease again with increasing x
- $k=0$
- 'critical' universe
- expands forever
- $\mathrm{k}=-1$
- open universe
- expands forever

The Energy-Momentum Tensor

Use the form for the 'perfect fluid'

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
\rho c^{2} & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

Einstein's Field Equation

The (time) evolution of the scale factor depends only on the time-time component of the Einstein equation:

$$
R_{00}-\frac{1}{2} g_{00} R=\frac{8 \pi G}{c^{4}} T_{00}
$$

- $T_{00}=\rho c^{2}$ (energy density)
- time part $R_{00}-\frac{1}{2} g_{00} R=\frac{3}{c^{2}}\left(\frac{\dot{a}}{a}\right)^{2}$

Friedmann Equation

Time evolution of the scale factor is described through the time part of the Einstein equations
Assume a metric for a homogeneous and isotropic universe (metric is diagonal in polar coordinates) and a perfect fluid

$$
\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}}=\frac{8 \pi G}{3} \rho(t)
$$

Friedmann Equation

Put the various densities into the Friedmann equation

$$
\frac{\dot{a}^{2}}{a^{2}}=H^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k}{a^{2}}=\frac{8 \pi G}{3}\left(\rho_{M}+\rho_{\gamma}+\rho_{v a c}\right)-\frac{k}{a^{2}}
$$

Use the critical density $\rho_{\text {crit }}=\frac{3 H_{0}^{2}}{8 \pi G} \approx 2 \cdot 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}$ (flat universe), define the ratio to the critical density $\Omega=\frac{\rho}{\rho_{\text {crit }}}$ Most compact form of Friedmann equation

$$
1=\Omega_{M}+\Omega_{\gamma}+\Omega_{v a c}+\Omega_{k}
$$

with $\Omega_{k}=-\frac{k}{a^{2} H^{2}}$

Dependence on Scale Parameter

For the different contents there were different dependencies for the scale parameter

$$
\rho_{M} \propto a^{-3} \quad \rho_{\gamma} \propto a^{-4} \quad \rho_{v a c}=\text { const }
$$

Combining this with the critical densities we can write the density as

$$
\rho=\frac{3 H_{0}^{2}}{8 \pi G}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3}+\Omega_{\gamma}\left(\frac{a_{0}}{a}\right)^{4}+\Omega_{\Lambda}+\Omega_{k}\left(\frac{a_{0}}{a}\right)^{2}\right]
$$

and the Friedmann equation

$$
H^{2}=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}\right]
$$

Redshift

Redshift is directly related to the ratio of the scales between emission and absorption of a photon

This is remarkably simple as a measurement in a spectrum tells the scale changes

Cosmological Redshift

For two different times we get

$$
\frac{d t_{1}}{a\left(t_{1}\right)}=\frac{d t_{2}}{a\left(t_{2}\right)}
$$

- i.e. the time scales with the scale parameter If the time intervals $d t$ are interpreted as oscillation periods, e.g. of a photon, then

$$
\frac{d t_{1}}{d t_{2}}=\frac{v_{2}}{v_{1}}=\frac{a\left(t_{1}\right)}{a\left(t_{2}\right)}=\frac{1}{1+z}
$$

with z as the redshift between the two times

Energy-Momentum Tensor

- The time (00) component of the Einstein equations is

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3 c^{2}}\left(\rho c^{2}+3 p\right)
$$

- As long as pressure and density are positive the universe decelerates $\ddot{a}<0$.
- Acceleration requires $\rho c^{2}+3 p<0$ or $\omega<-\frac{1}{3}$.

Energy-Momentum Tensor

- A general form is an equation of state $p=\omega \rho c^{2} . \omega$ is the equation of state parameter.
- Inserting this into the conservation equation gives $\frac{\dot{\rho}}{\rho}=-3(1+\omega) \frac{\dot{a}}{a}$ which integrates to $\log (\rho)=-3(1+\omega) \log (a)+$ const .
- Exponentiating yields $\rho \propto a^{-3(1+\omega)}$

Matter

- The pressure in matter is negligible compared to the mass content (think $m c^{2}$) and hence $\omega=0$
- Thus $\rho_{M} \propto a^{-3}$
- Inserting this in the Friedmann equation for a flat universe ($\mathrm{k}=0$) provides the time dependence of the scale factor

$$
a(t) \propto t^{2 / 3}
$$

Radiation

- Radiation decreases with the volume (i.e. number of photons), but has one additional factor due to the redshift $\omega=\frac{1}{3}$ and hence $\rho_{\gamma} \propto a^{-4}$
- The time dependence here is now

$$
a(t) \propto \sqrt{t}
$$

Vacuum energy

- A special case is $\rho_{\Lambda}=$ const.
- In this case the density is associated to the vacuum
- Now the scale factor grows exponentially

$$
a(t) \propto e^{H t}
$$

With the equation of state parameter ω

General luminosity distance
$D_{L}=\frac{(1+z) c}{H_{0 \sqrt{\left|\Omega_{k}\right|}}} S\left\{\sqrt{\left|\Omega_{k}\right|} \int_{0}^{z}\left[\Omega_{k}\left(1+z^{\prime}\right)^{2}+\sum_{i} \Omega_{i}\left(1+z^{\prime}\right)^{3\left(1+\omega_{i}\right)}\right]^{-\frac{1}{2}} d z^{\prime}\right\}$

- with $\Omega_{k}=1-\sum_{i} \Omega_{i}$ and $\omega_{i}=\frac{p_{i}}{\rho_{i} c^{2}}$
- $\omega_{M}=0$ (matter)
- $\omega_{\gamma}=1 / 3$ (radiation)
- $\omega_{\Lambda}=-1$ (cosmological constant)

Synopsis

- Gravity \rightarrow Einstein Equations
- 'Contents' \rightarrow Energy-momentum tensor
- perfect fluid, density, pressure
- dependence on different contents
- matter, radiation, vacuum, curvature
- FRW metric (isotropy, homogeneity) \rightarrow different curvature models
- Time evolution \rightarrow Friedmann Equation
- Hubble constant
- Redshift \rightarrow related to scale factor

Lookback Time

Consider

$$
H=\frac{\dot{a}}{a}=\frac{\mathrm{da}}{\mathrm{dt}} \frac{1}{\mathrm{a}}=\mathrm{dt} \ln \left(\frac{\mathrm{a}(\mathrm{t})}{\mathrm{a}_{0}}\right)=\frac{1}{\mathrm{dt}} \ln \left(\frac{1}{1+\mathrm{z}}\right)=-\frac{1}{1+\mathrm{z}} \frac{\mathrm{dz}}{\mathrm{dt}}
$$

Inserting into the Friedmann equation we find the equation for the time interval

$$
d t=\frac{-d z}{H_{0}(1+z) \sqrt{\Omega_{M}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}}
$$

and integrating

$$
t_{0}-t_{1}=\frac{1}{H_{0}} \int_{0}^{z_{1}} \frac{d z}{(1+z) \sqrt{\Omega_{M}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}}
$$

Age in a matter dominated universe ($t_{1}=0, z=\infty$)

$$
t_{0, M}=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z)^{5 / 2}}=\frac{2}{3 H_{0}} \text { and } t_{0, \gamma}=\frac{1}{2 H_{0}}
$$

Cosmic Distances

We can now also express the luminosity
distance $D_{L}=a_{0} x_{1}(1+z)$ in these terms

- from the metric for a light ray coming towards
us we have $\frac{d r}{c d t}=\frac{\sqrt{1-k x^{2}}}{a(t)}$ which turns into

$$
\frac{\mathrm{a}_{0}}{\mathrm{c}} \frac{d x}{\sqrt{1-k x^{2}}}=(1+z) d t
$$

- after integration we have (using $d t$ from above)

$$
\frac{a_{0}}{c} \int_{0}^{x_{1}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{0}^{z_{1}} \frac{d z}{H_{0} \sqrt{\Omega_{\text {matter }}(1+z)^{3}+\Omega_{\text {rad }}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}}
$$

Luminosity Distance

Putting this together with the appropriate trigonometric functions gives
$\mathrm{D}_{L}=a_{0} x_{1}(1+z)=\frac{c(1+z)}{H_{0} \sqrt{\left|\Omega_{k}\right|}} S\left(\sqrt{\left|\Omega_{k}\right|} \int_{0}^{z} \frac{d z^{\prime}}{\sqrt{\Omega_{M}\left(1+z^{\prime}\right)^{3}+\Omega_{\gamma}\left(1+z^{\prime}\right)^{4}+\Omega_{\Lambda}+\Omega_{k}\left(1+z^{\prime}\right)^{2}}}\right)$
With $S(y)= \begin{cases}\sin (y) & k>0 \\ y & k=0 \\ \sinh (y) & k<0\end{cases}$
Luminosity distance as a function of today's measurements ($H_{0}, \Omega^{\prime} s$) and the redshift z

Luminosity Distance

- The rate of the photon arrivals is reduced by a factor $\frac{a\left(t_{1}\right)}{a\left(t_{0}\right)}=\frac{1}{1+z}$ and the energy of the photons ($E=h v$) is also reduced by a factor $(1+z)$ (remember luminosity L is energy per time)

$$
l=\frac{L}{4 \pi x_{1}^{2} a^{2}\left(t_{0}\right)(1+z)^{2}}
$$

- Set $D_{L}=x_{1} a\left(t_{0}\right)(1+z)$ and we recover the equation for the luminosity distance $l=\frac{L}{4 \pi D_{L}^{2}}$

Angular size distance

- A different method is to measure the angle of a distant object of known size $D_{A}=\frac{l}{\theta}$
(here l is the size of the object; θ the observed angle)
- Inspection of the metric (here we only need the $g_{\theta \theta}$ part), which gives $l=x_{1} a\left(t_{1}\right) \theta$ and inserting this in the equation above
yields $D_{A}=x_{1} a\left(t_{1}\right)$ and with $\frac{a\left(t_{1}\right)}{a\left(t_{0}\right)}=\frac{1}{1+z}$
we find $\frac{D_{L}}{D_{A}}=(1+z)^{2}$.

Distance Duality

This is quite remarkable for high redshifts

- the physical distances differ for the same redshift!
- an object for which we could measure the angular size distance and the luminosity distance would give a different number of $M p c$!
- a direct consequence of general relativity

z	$\frac{D_{L}}{D_{A}}$
0.1	1.21
0.15	1.32
0.2	1.44
0.25	1.56
0.3	1.69
0.35	1.82

Distance Duality

- Now measured in several systems
- galaxy clusters
- Sunyaev-Zeldovich effect
- gravitational lenses
- Type Il Supernovae
- use two different methods to the same object
- Expanding Photosphere Method
- equates luminosity distance with angular size distance
- Standardizable Candle Method
- pure luminosity distance

Expansion of the Universe

Luminosity distance in an isotropic, homogeneous universe as a Taylor expansion

$$
D_{L}=\frac{c z}{H_{0}}\left\{1+\frac{1}{2}\left(1-q_{0}\right) z-\frac{1}{6}\left[1-q_{0}-3 q_{0}^{2}+j_{0} \pm \frac{c^{2}}{H_{0}^{2} R^{2}}\right] z^{2}+O\left(z^{3}\right)\right\}
$$

Hubble's Lawdeceleration jerk/equation of state

$$
H_{0}=\frac{\dot{a}}{a} \quad q_{0}=-\frac{\ddot{a}}{a} H_{0}^{-2} \quad j_{0}=\frac{\ddot{a}}{a} H_{0}^{-3}
$$

Local Universe ($z \ll 1$)

Hubble Law

$$
D=\frac{v}{H_{0}}=\frac{c z}{H_{0}}
$$

Luminosity distance

$$
D_{L}=\sqrt{\frac{L}{4 \pi F}}
$$

Distance modulus

$$
m-M=5 \log \left(D_{L}\right)-5
$$

Distance in units of pc

Hubble Constant

- Measure cosmic expansion velocity per unit scale length

$$
H_{0}=\frac{v}{D_{L}}\left(\text { units: } k m s^{-1} M p c^{-1}\right)
$$

- Ignore higher-order cosmological effects
- de/acceleration
- Spectroscopy \rightarrow redshift \rightarrow velocity
- Photometry \rightarrow brightness \rightarrow distance

Time Dilation in SNe la

Uniform light curve shapes in a given filter
\rightarrow Distant supernovae should show a

'slower' light curve

Leibundgut et al. 1996

Bruno Leibundgut

Time dilation

Spectroscopic clock in the distant universe

Blondin et al. (2008)

Time Dilation

'Tired Light' can be excluded beyond doubt $\left(\Delta \chi^{2}=120\right)$

Distance to SN PS1-13bni

$$
(z=0.335)
$$

Use EPM and CSM to measure distance to same supernova

SN	Dilution factor	Filter	$\begin{gathered} D_{L} \\ \mathrm{Mpc} \end{gathered}$	$\begin{gathered} \text { Averaged } D_{L} \\ \text { Mpc } \end{gathered}$	$\begin{gathered} t_{0}^{\star} \\ \text { days }^{\star} \end{gathered}$	Averaged t_{0}^{\star} days*	$\begin{aligned} & t_{0}^{\diamond} \\ & \text { MJD } \end{aligned}$	Estimate of t_{0} via
PS1-13bni	$\mathrm{H} 01-\mathrm{H} \beta$	B	1699 ± 451	1772 ± 538	7.3 ± 12.4			EPM
		V	1538 ± 1109		5.4 ± 8.3	8.1 ± 5.9	56401.3 ± 7.9	
		I	2078 ± 1082		11.7 ± 9.7			
		B	2019 ± 542		8.6 ± 13.6	9.5 ± 6.4		
	D05-H β	V	1823 ± 1349	2110 ± 658	6.6 ± 8.8		56400.0 ± 8.6	
		I	2488 ± 1336		13.4 ± 10.5			

| $S N$ | Estimate
 of t_{0} via | t_{0}^{\diamond}
 mjd | V_{50}^{*}
 mag | I_{50}^{*}
 mag | v_{50}
 $\mathrm{~km} \mathrm{~s}^{-1}$ | Estimate of
 velocity via | μ
 mag | D_{L}
 Mpc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | EPM - H01 | 56401.3 ± 7.9 | 23.39 ± 0.26 | 23.18 ± 0.20 | 5814 ± 1175 | | 40.65 ± 0.76 | 1348 ± 470 |
| | EPM - D05 | 56400.0 ± 8.6 | 23.39 ± 0.26 | 23.19 ± 0.20 | 5913 ± 1237 | | 40.68 ± 0.77 | 1368 ± 487 |

Distance Duality

First attempts inconclusive

- Excellent distance indicators
- Experimentally verified
- Work of several decades
- Best determination of the Hubble constant

Hubble Constant

- SN Hubble diagram

$$
m-M=5 \log v+25-5 \log H_{0}
$$

Hubble Constant

Calibration of M(SN la @ max)
 - Distance ladder

PAST DISTANCE LADDER (100 Mpc)

NEW LADDER (100 Mpc)

NA

3\% Anchor:
NGC4258

Distance ladder

SZ Effect, gravity waves, ?

Cepheid Stars

Period-luminosity relation

Riess et al. 2011

Freedman \& Madore 2010

Hubble Constant

Supernova la Hubble diagram

Riess et al. 2016

Hubble Constant

Caveats

- local calibrators still uncertain
- Large Magellanic Cloud
- Maser in NGC 4258
- in the future geometric distances (parallaxes) to nearby Cepheids
- extinction
- absorption of light by dust in the Milky Way and in the host galaxy
- corrections not always certain
- peculiar velocities of galaxies
- typically around 300 km/s

Current Status (NIR)

Foundation Survey

Hubble Constant(s)

Planck satellite (CMB; 2016) measurement at $z \approx 1000$

$$
H_{0}=(67.8 \pm 0.9) \mathrm{km} \mathrm{~s}^{-1} M p c^{-1}
$$

Riess et al. (local; 2016)

$$
H_{0}=(73.24 \pm 1.74) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Dhawan et al. (local; NIR; 2018)
same zero-point as Riess et al. (2016)

$$
H_{0}=(72.8 \pm 1.6(\text { stat }) \pm 2.7(\text { syst })) \mathrm{km} \mathrm{~s}^{-1} M p c^{-1}
$$

Riess et al. (local; 2018)

$$
H_{0}=(73.53 \pm 1.62) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Hubble Constant

Latest values

Gaia and H_{0}

- Calibrate Cepheid distances with parallaxes
- long-period Cepheids so far not accessible
- Single step to the SNe la
- Helps to bypass intermediate steps and calibrators
- reduced uncertainty on H_{0}
- Goal: uncertainty less than 1\%

The SN Hubble Diagram

Supernova Cosmology

Constant ω firmly established

$\mathrm{N}_{\text {sN }}$	$\mathbf{\Omega}_{\text {M }}$ (flat)	w (constant, flat)	Light curve fitter	Reference
115	$0.263{ }_{-0.042}^{+0.042}{ }_{-0.032}^{+0.032}$	$-1.023{ }_{-0.090}^{+0.090}{ }_{-0.054}^{0.054}$	SALT	Astier et al. 2006
162	$0.267_{-0.018}^{+0.028}$	$-1.069_{-0.083}^{+0.091+0.13}$	MLCS2k2	Wood-Vasey et al. 2007
178	$0.288{ }_{-0.019}^{+0.029}$	$-0.958_{-0.090}^{+0.088}{ }_{-0.13}$	SALT2	
288	$0.307_{-0.019}^{+0.019}{ }_{-0.023}^{+0.023}$	$-0.76{ }_{-0.07}^{+0.07}+0.11$	MLCS2k2	Kessler et al. 2009
288	$0.265_{-0.016}^{+0.016+0.025}$	$-0.96_{-0.06}^{+0.06}+0.13$	SALT2	
557	$0.279_{-0.016}^{+0.017}$	$-0.997{ }_{-0.054}^{+0.050+0.077}$	SALT2	Amanullah et al. 2010
472		$-0.911_{-0.20}^{+016}{ }_{-0.14}^{ \pm 0.07}$	SiFTO/SALT2	Conley et al. 2011
472	0.269 ± 0.015	$-1.061_{-0.068}^{+0.069}$	SALT2	Sullivan et al. 2011
580	0.271 ± 0.014	$-1.013_{-0.073}^{+0.077}$	SALT2	Suzuki et al. 2011
740	0.295 ± 0.034	$-1.018 \pm 0.057 \mathrm{CMB}$	SALT2	Betoule et al. 2014
		$-1.027 \pm 0.055 \mathrm{CMB}+\mathrm{BAO}$		
313	$0.277_{-0.012}^{+0.010}$	$-1.186_{-0.065}^{+0.076}$	SALT2	Rest et al. 2014
1049	0.306 ± 0.012	-1.031 ± 0.040	SALT2	Scolnic et al. 2018
1369	0.324 ± 0.042	-0.986 ± 0.058	SALT2	Jones et al. 2018

Status 2014

Status 2018

Scolnic et al. 2018

What next?

Already in hand

- >1000 SNe la for cosmology
- constant ω determined to 5\%
- accuracy dominated by systematic effects

Missing

- good data at $z>1$
- light curves and spectra
- good infrared data at $z>0.5$
- cover the restframe B and V filters
- move towards longer wavelengths to reduce absorption effects

Cosmology - more?

Multi-parameter problem

Flat Universe

Flat Universe

Flat Universe

Ariel Goobar
Bruno Leibundgut

Speculations

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

Einstein's cosmologal constant
No explanation in particle physics theories
Quintessence
Quantum mechanical particle field releasing energy into the universe
Signatures of high dimensions
Gravity is best described in theories with more than four dimensions
Phantom Energy
Dark Energy dominates and eventually the universe end in a (Big Rip)

