# The Hubble Constant and the never-ending story of the expansion rate of the Universe 

Bruno Leibundgut ESO

## Great Debate: What is the size of the Universe?

Presentations at the Annual Meeting of the National Academy of Sciences in Washington DC, 26. April 1920 Harlow Shapley vs. Heber Curtis


## Background

## Expanding universe

$\rightarrow$ expansion rate critical for cosmic evolution


Fig. 9. The Formulation of the Velocity-Distance Relation.

## Leading Theory of the Universe



## Dealing with an expanding Universe

## Cosmic Distances

Separate the observed distances $r(t)$ into the expansion factor $a(t)$ and the fixed part $x$ (called comoving distance)

$$
r(t)=a(t) x
$$




Time

## Friedmann Equation

Time evolution of the scale factor is described through
 the time part of the Einstein equations

Assume a metric for a homogeneous and isotropic universe and a perfect fluid

$$
\begin{gathered}
\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}}=\frac{8 \pi G}{3} \rho(t) \\
g_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & a^{2} & 0 & 0 \\
0 & 0 & a^{2} & 0 \\
0 & 0 & 0 & a^{2}
\end{array}\right)
\end{gathered}
$$

## Friedmann Equation

Put the various densities into the Friedmann equation

$$
\frac{\dot{a}^{2}}{a^{2}}=H^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k}{a^{2}}=\frac{8 \pi G}{3}\left(\rho_{M}+\rho_{\gamma}+\rho_{v a c}\right)-\frac{k}{a^{2}}
$$

Use the critical density $\rho_{\text {crit }}=\frac{3 H_{0}^{2}}{8 \pi G} \approx 2 \cdot 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}$
(flat universe), define the ratio to the critical density

$$
\Omega=\frac{\rho}{\rho_{\text {crit }}}
$$

Most compact form of Friedmann equation

$$
1=\Omega_{M}+\Omega_{\gamma}+\Omega_{v a c}+\Omega_{k}
$$



## Dependence on Scale Parameter

For the different contents there were different dependencies for the scale parameter

$$
\rho_{M} \propto a^{-3} \quad \rho_{\gamma} \propto a^{-4} \quad \rho_{v a c}=\text { const }
$$

Combining this with the critical densities we can write the density as

$$
\rho=\frac{3 H_{0}^{2}}{8 \pi G}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3}+\Omega_{\gamma}\left(\frac{a_{0}}{a}\right)^{4}+\Omega_{\Lambda}+\Omega_{k}\left(\frac{a_{0}}{a}\right)^{2}\right]
$$

and the Friedmann equation

$$
H^{2}=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}\right]
$$

## History of $H_{0}$ Expansion rate by G. Lemaître (1927)

de l'observateur. En effet, la période de la lumière émise dans des conditions physiques semblables doit être partout la même lorsqu'elle est exprimée en temps propre.

$$
\begin{equation*}
\frac{v}{c}=\frac{\partial t_{2}}{\partial t_{1}}-1=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}-1 \tag{22}
\end{equation*}
$$

mesure donc l'effet Doppler apparent dû à la variation du rayon de l'univers. Il est egal à l'excès sur l'unité du rapport des rayons de l'univers à l'instant ou la lumière est recue et à l'instant ou elle est émise. $v$ est la vitesse de l'observateur qui produirait le même effet. Lorsque la source est suffisamment proche nous pouvons écrire approximativement

$$
\frac{v}{c}=\frac{\mathrm{R}_{2}-\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{d \mathrm{R}}{\mathrm{P}}=\frac{\mathrm{R}^{\prime}}{\mathrm{R}} d t=\frac{\mathrm{R}^{\prime}}{\mathrm{R}} r
$$

où $r$ est la distance de la source. Nous avons donc
Footnote!

[^0]
## Intermezzo

 Age of the Universe Matter-dominated universe has the following age| $\mathrm{H}_{\mathrm{o}}(\mathrm{km} / \mathrm{s} / \mathrm{Mpc})$ | $\mathrm{to}(\mathrm{yr})$ |
| :---: | :--- |
| 500 | $1.30 \cdot 10^{9}$ |
| 250 | $2.61 \cdot 10^{9}$ |
| 100 | $6.52 \cdot 10^{9}$ |
| 80 | $8.15 \cdot 10^{9}$ |
| 70 | $9.32 \cdot 10^{9}$ |
| 60 | $1.09 \cdot 10^{10}$ |
| 50 | $1.30 \cdot 10^{10}$ |
| 30 | $2.17 \cdot 10^{10}$ |

- age of the Earth: $4.5 \cdot 10^{9}$ years
- oldest stars: $\sim 1.2 \cdot 10^{10}$ years


## History of $H_{0}$



## History of $H_{0}$



## History of $H_{0}$



## Extragalactic Distances Required for a 3D picture of the (local) universe

2MASS Redshift Survey
Corona Borealis
Supercluster ( 0.072 ) $\left.\begin{array}{c}\text { Bootes } \\ \text { Supercluster Coma } \\ \text { (0.061) } \\ \text { Cluster } \\ (0.023)\end{array} \begin{array}{c}\text { Ophiuchus } \\ \text { Cluster }\end{array}\right)$
Supercluster (0.072)
Hercules $\begin{gathered}\text { Supercluster } \\ (0.061)\end{gathered} \begin{gathered}\text { Cluster } \\ (0.023)\end{gathered} \begin{gathered}\text { Ophiuchus } \\ \text { Cluster } \\ (0.028)\end{gathered} \quad$ Virgo Cluster (16 Mpc)


## Extragalactic Distances <br> The Astronomical Journal, 146:69 (14pp), 2013 September



Figure 8. Perspective view of the V8k catalog after correction for incompleteness and represented by three layers of isodensity contours. The region in the vicinity of the Virgo Cluster now appears considerably diminished in importance. The dominant structures are the Great Wall and the Perseus-Pisces chain, with the Pavo-Indus feature of significance

## Local Flows

## Inhomogeneous mass distribution in the

 local Universe

## Measuring $H_{0}$



## Classical approach

$\rightarrow$ distance ladder to reach (smooth) Hubble flow


## Hubble Constant

## Three different methods

1. Distance ladder

- Calibrate next distance indicator with the previous

2. Physical methods

- Determine either luminosity or length through physical quantities
- Sunyaev-Zeldovich effect (galaxy clusters)
- Expanding photosphere method in supernovae
- Physical calibration of thermonuclear supernovae
- Geometric methods, e.g. megamasers

3. Global solutions

- Use knowledge of all cosmological parameters
- Cosmic Microwave Background


## Classical Distance Ladder

Primary distance indicators (within the Milky Way)

- trigonometric parallax
- proper motion
- apparent luminosity
- main sequence
- red clump stars
- RR Lyrae stars
- eclipsing binaries
- Cepheid stars



## Classical Distance Ladder

Secondary distance indicators (beyond the
 Local Group)

- Important check
- Large Magellanic Cloud
- Tully-Fisher relation
- Fundamental Plane
- Supernovae (mostly SN Ia)
- Surface Brightness Fluctuations



## Hubble Constant

## Calibration of M(SN la @ max) Distance ladder

PAST DISTANCE LADDER ( 100 Mpc )


NEW LADDER ( 100 Mpc )


NA

3\% Anchor:
NGC4258

## Hubble Constant

## Supernova la Hubble diagram

Type Ia Supernovae $\rightarrow$ redshift(z)


Riess et al. 2016

## $H_{0}$ with Supernovae

- Local calibrators (calibrate the Cepheid L-P rel.)
- Large Magellanic Cloud
- 1\% accuracy with eclipsing binaries (Pietrzyński et al. (2019)
- Maser in NGC 4258
- 3\% accuracy (Humphreys et al. 2013)
- geometric distances (parallaxes) to nearby Cepheids
- Extinction
- absorption in the Milky Way and the host galaxy
- corrections not always certain
- Peculiar velocities of galaxies
- typically around 300 km/s


## Type la Supernovae

## Variations on a theme

- critical parameters?
- nickel mass
- ejecta mass
- explosion energy(?)
- explosion mechanism?
- progenitor evolution?



## Hubble Constant

## SN Hubble diagram

$$
m-M=5 \log v+25-5 \log H_{0}
$$



## SNe la Hubble Diagram (NIR)



## Problem solved?

New discrepancy between the
measurements of the local $\mathrm{H}_{0}$ (distance ladder) and early universe (CMB)
Indication of an incomplete model
 of cosmology?

## Gravitational Lenses Time delays in lensed quasars

flat $\Lambda$ CDM


(a) $B 1608+656$

(b) RXJ1131-1231

(f) PG $1115+080$

## $H_{0}$ Summary

flat - ^CDM


Bonvin and Millon
https://doi.org/10.5281/zenodo. 3635517

## Type II Supernovae

- Core-collapse explosions of massive, red-supergiant stars

- Peak absolute mags between -16 and -18
$\rightarrow$ observable up to $z \approx 0.4$
- Most common type of SN by volume


## Physical parameters of core collapse SNe

Light curve shape and the velocity evolution can give an indication of the total explosion energy, the mass and the initial radius of the explosion


Observables:

- length of plateau phase $\Delta t$
- luminosity of the plateau $L_{V}$
- velocity of the ejecta $\mathrm{v}_{\mathrm{ph}}$
- $\mathrm{E} \propto \Delta t^{4} \cdot v_{\text {ph }}{ }^{5} \cdot L^{-1}$
- $M \propto \Delta t^{4} \cdot v_{\text {ph }}{ }^{3} \cdot L^{-1}$
- $R \propto \Delta t^{-2} \cdot v_{p h}{ }^{-4} \cdot L^{2}$


## Expanding Photosphere Method

## Modification of Baade-Wesselink method

 for variable stars- Assumes
- Sharp photosphere
$\rightarrow$ thermal equilibrium
- Spherical symmetry
$\rightarrow$ radial velocity
- Free expansion


Kirshner \& Kwan 1974

## EPM: it's all in the spectra



## Expanding Photosphere Method

$$
\theta=\frac{R}{D}=\sqrt{\frac{f_{\lambda}}{\zeta_{\lambda}^{2} \pi B_{\Lambda}(T)}} ; R=v\left(t-t_{0}\right)+R_{0} ; D_{A}=\frac{v}{\theta}\left(t-t_{0}\right)
$$

- $R$ from radial velocity
- Requires lines formed close to the photosphere
- D from the surface brightness of the black body
- Deviation from black body due to line opacities
- Encompassed in the dilution factor $\zeta^{2}$


## Expanding Photosphere Method

$$
\frac{\Theta}{v}=\frac{1}{D_{A}}\left(t-t_{0}\right)
$$

Gall et al. 2018



## Preliminary Results

## Consistent results

- not independent as local calibration required



## Expanded Photosphere Method Reloaded

- Use individual atmospheric models for the spectral fits
- use of the TARDIS radiation transport model
- absolute flux emitted
- Accurate explosion date
- accurate zero point
- At least 5 epochs per supernova


## Atmosphere Models

TARDIS fits for different epochs

(a) 9 July 2005

(c) 11 July 2005

(b) 10 July 2005

(d) 14 July 2005

Vogl et al. 2020


## Distance Determination

Slope is inverse distance: $\frac{\Theta}{v}=\frac{1}{D_{A}}\left(t-t_{0}\right)$


## adHOcc

"accurate determination of HO with core-collapse supernovae" (Flörs, Hillebrandt, Kotak, Smartt, Spyromilio, Suyu, Taubenberger, Vogl)

- Use the Expanding Photosphere Method to ~30 Type II supernovae in the Hubble flow ( $0.03<z<0.1$ )
- Independent of distance ladder
- no parallaxes, no Cepheids, no Type la supernovae
- FORS2 Large Programme over 3 semesters
- 6 epochs spectroscopy and photometry per supernova
- SNFactory data
- about 15 SNe with $0.01<z<0.05$


## adHOcc

## Critical observables

- time of explosion
- spectral coverage
- before max until well into the plateau
- photometry
- simultaneously to spectroscopy


## VLT- status


C. Vogl (2020)

## Conclusions

Hubble constant sets absolute scale (and age) of the universe

- Past conflicts resolved
- Age of Universe is bigger than age of the Earth
- recognition of different stellar populations

- Age of Universe bigger than oldest stars
- cosmological constant



## Conclusions

Current discrepancy of 4 to $5 \sigma$ between

- $H_{0}$ measured locally (distance ladder) and
- $H_{0}$ measured at $\mathrm{z}=1100$ (CMB)

Significance?

- systematics based on Cepheid calibration

Extreme accuracy required
Independent measurements needed

- Expanding Photosphere Method


[^0]:    (2) En ne donnant pas de poids aux observations, on trouverait $670 \mathrm{Km} / \mathrm{sec}$ à $1,16 \times 10^{6}$ parsecs, $575 \mathrm{Km} . \mathrm{sec}$ à $10^{6}$ parsecs. Certains auteurs ont cherché à mettre en

