
Pipeline Development with
CPL
Ralf Palsa

Pipeline Seminar 2019

● The Common Pipeline Library

● System Requirements

● Interface to Data Reduction Pipelines

● Developing with CPL

● Roadmap

● Questions

● Coding Standards

2

Outline

Pipeline Seminar 2019

● What it is:
 The CPL is an SDK organized into a hierarchical set of ISO/IEC

9899:1999(E) compliant libraries, released under GPL2+.

 Basic data types, low level services and operations (cplcore)

 Application and user interface related types and utilities (cplui)

 Standard implementations of astronomical data reduction tasks
(cpldrs) → HDRL

 Data Flow System related utilities (cpldfs)

● What it is not:

 It is not a complete data reduction environment or a general
purpose image processing library!

3

The Common Pipeline Library

Pipeline Seminar 2019

● Its purpose is to:

 standardize the development of VLT/ELT instrument pipelines
(the way they are built, and the way they are developed),

 have a better idea on what is delivered to ESO as a final
product,

 provide a basic, well tested set of extensible software
components to pipeline developers in order to

 allow a rapid implementation of data reduction tasks,
 shorten the pipeline development cycle,
 ease pipeline maintenance over their lifetime (10+ yrs),

 promote software re-use across pipelines.

4

The Common Pipeline Library

Pipeline Seminar 2019

● Getting CPL:
 http://www.eso.org/sci/software/cpl

 HTML API Reference documentation is included in the distribution

 API Reference and User Manual (update is in progress) is also
available on the web site

5

The Common Pipeline Library

http://www.eso.org/sci/software/cpl

Pipeline Seminar 2019

● Target Environment:
 VLT/(ELT) Standard Platform, i.e. CentOS 7.3 (64bit)

 Unix(like), POSIX compliant operating system (any current Linux
distribution, Mac OS X)

● Runtime Dependencies:
 CFITSIO library (3.350 or newer)

 FFTW (3.3.4 or newer)

 Mark Calabretta's wcslib (4.24 or newer)

● Additional Runtime Dependencies for Pipelines:
 GNU gsl 2.1

 Anything else needs to be approved by ESO

6

System Requirements

Pipeline Seminar 2019

● Developer Tools

7

System Requirements

Tool VLT Platform
Baseline

Recommended
(for compatibility)

GNU GCC 4.8.5 7.x, 8.x, 9.x

GNU make 3.82

GNU gdb 7.6.1 8.2

Autoconf 2.69 2.69

Automake 1.13.4 1.16.1

Libtool 2.4.2 2.4.6

Doxygen 1.8.5 1.8.14

Valgrind 3.11.0 3.11.0

pdflatex

...

Pipeline Seminar 2019

● Hardware Limitations:
 What is defined by the ESO IT Standard.

 Anything else needs to be approved by ESO
● VLT Standard Platform (as of April 2018):

 Dell M630

 2 x Intel Xeon E5-2697 v4, 2.3 GHz

 128GB RAM (UT1, UT2, UT3, VST, VISTA, Espresso),

 256GB (UT4, VLTI)

 300GB storage (internal disk) + external storage (fileserver)

8

System Requirements

Pipeline Seminar 2019

● CPL Plugin Interface:
 Pipeline recipes are implemented as dynamically loaded modules,

i.e. plugins

 It standardizes the pipeline recipe interface

 Recipes can be implemented without a detailed knowledge of the
run-time environment (Paranal, Garching, at home)

 Different front-ends can use the same recipe installation

 Updating a recipe installation has no impact on the rest of the
system: no re-compilation of other parts of the system is required

9

Interface to Data Reduction Pipelines

Pipeline Seminar 2019

● Pipeline Frontends:
 Command line utility EsoRex

 File browser Gasgano

 Scientific workflow Reflex (using EsoRex)

Sharing the same single pipeline installation!

10

Interface to Data Reduction Pipelines

Pipeline Seminar 2019

● Pipeline Recipes High Level Requirements:
 Open source, GPL2+ license

 Compliant with the VLT/ELT Standard Environment (hardware,
software, OS, compiler, etc.)

 Pipelines must be implemented in C following the ISO/IEC
9899:1999(E) standard (→ to be aligned with ELT C standard).

 CPL must be used whenever it is possible, in particular FITS file I/O
shall be done exclusively through CPL.

 Coding style should follow the conventions used for CPL, i.e it
should follow:

“Recommended C Style and Coding Standards”, L.W.
Cannon, et al., 15th March 2000, (modified version of the
Indian Hill C Style and Coding Standards)

11

Developing with CPL

Pipeline Seminar 2019

● Start a new pipeline project from the:
 iiinstrument template,

 an already setup SVN repository (in general your code will be
hosted in the ESO SVN repository)

Both will provide a standard pipeline directory tree (it is a subdirectory in the
SVN repository setup), containing a recipe skeleton which should be used
as a starting point.

12

Developing with CPL

Pipeline Seminar 2019

● The standard pipeline tree contains 2 main directories:
 <instrument name>, e.g. the template uses iiinstrument

 Type definitions
 Utility functions
 Data reduction task implementations
 Instrument specific CPL extensions
 Implements the instrument DRS library

 recipes
 Implementations of the plugin interface functions for each recipe
 Implementations of the sequence of data reduction tasks (bias

subtraction, flat field correction, ...)

13

Developing with CPL

Pipeline Seminar 2019

● Pipeline Recipes are implemented as CPL plugins using the CPL
recipe datatype:

 A CPL recipe is derived from a CPL plugin, and provides the hooks for the
plugin interface functions (fixed calling calling sequence):

 example_flat_create(): recipe initialization, including parameter definition

 example_flat_exec(): execution of data reduction sequence by calling one or
more data processing functions

 example_flat_destroy(): recipe cleanup

 cpl_plugin_get_info(): Creates the plugin instance. Fixed function name!

 It provides 2 data members for data I/O
 cpl_parameterlist: Used to pass configuration data (options) to the recipe.

(input only). Created by example_flat_create(), cleaned up by
example_flat_destroy()

 cpl_frameset: Used to pass data frames to and from the recipe (input/output).
Managed (created/destroyed) by the application invoking the plugin (EsoRex)

14

Developing with CPL

Pipeline Seminar 2019

● Outline of the sequence of data reduction tasks, e.g. an
implementation of an example_flat() recipe:

1. Identify raw and calibration frames

2. Get recipe configuration options and required data from the recipe's
parameter list and the frame set

3. Execute the algorithm (i.e. call to DRS library function)

4. Compute QC parameters (quality control information)

5. Add DFS and QC keywords to the appropriate product header

6. Create a product frame for each product and add it to the frame set

7. Save each product as a DFS compliant local file

8. Repeat steps 2 – 7 as needed

15

Developing with CPL

Pipeline Seminar 2019

● Main CPL Classes and Services:
 Recipe I/O:

 cpl_parameterlist: for recipe parameters
 cpl_frameset: for files

 Basic data types:
 cpl_image: 2D pixel data array manipulation
 cpl_table: Table data handling (e.g. catalog information)
 cpl_propertylist: Meta data handling (keyword value pairs,

e.g. FITS header information)

16

Developing with CPL

Pipeline Seminar 2019

● Main CPL Classes and Services (cont.):
 Basic mathematical types:

 cpl_vector

 cpl_matrix

 ...

 Error handling

 Interfaces to FFTW and wcslib

 Utilities to create DFS compliant products

17

Developing with CPL

Pipeline Seminar 2019

● DFS Compliant Recipe Products:
 All products must be FITS files

 They must be saved to the current working directory

 Local file names should be predictable (naming and order)

 They have to comply to the Data Interface Control Document (ESO 044156)‑

 They have to comply to the Science Data Products Standard (ESO 044286)‑

18

Developing with CPL

Pipeline Seminar 2019

● DFS Compliant Recipe Products (cont.):
 DFS compliant products

 Inherit keywords from the first raw frame (in general).

 Header(s) contain the standard PRO keywords (ESO product dictionary
1.16)

 Headers contain the QC quality control parameters (QC dictionary is a
deliverable)

 Headers may contain DRS related keywords (ESO.DRS prefix, if used
the DRS dictionary is a deliverable)

 CPL product saving functions will create DFS compliant products:

 cpl_dfs_save_image()

 cpl_dfs_save_table()

 cpl_dfs_save_propertylist()

 cpl_dfs_setup_product_header()

19

Developing with CPL

Pipeline Seminar 2019

● Building recipes:
 Bootstrapping the build tree:

 autogen.sh

 configure --enable-maintainer-mode

 The build tree must support out-of-source builds, i.e. using a
separate build directory

 Building the tree, initial checks
 make

 make install

 make doxygen (optional)
 make check (for unit tests, self-contained, no external

dependencies including data)

20

Developing with CPL

Pipeline Seminar 2019

● Running recipes:
 For developers using EsoRex is recommended

 it is the most flexible tool
 can easily be used with the debugger

 General EsoRex syntax:

esorex [esorex options] [<recipe> [recipe options] [sof]]

 Useful options:

esorex – help–

esorex --recipes

esorex --man-page <recipe>

21

Developing with CPL

Pipeline Seminar 2019

● Set of Frames file format:

/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:32:47.341.fits ARC

#/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:33:50.290.fits ARC

/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:38:05.933.fits ARC

#/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:39:26.889.fits ARC

/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:44:57.510.fits ARC

#/diskb/data_muse/raw/2014-10-14/MUSE.2014-10-14T10:46:00.568.fits ARC

$MUSE_CAL/muse_line_catalog.fits LINE_CATALOG

$MUSE_CAL/MUSE_MASTER_BIAS_slow.fits MASTER_BIAS

$MUSE_CAL/MUSE_MASTER_FLAT_slow_wfm-e.fits MASTER_FLAT
$MUSE_CAL/MUSE_TRACE_TABLE_slow_wfm-e.fits TRACE_TABLE

22

Developing with CPL

Pipeline Seminar 2019

● Debugging Recipes:
 Requires debug build of CPL, EsoRex and the recipes

 Run configure with enable-debug–

 Pass debugging flags to configure:

configure ... CFLAGS=”-pipe -rdynamic -g3 -ggdb -O0 -fno-

builtin -Wextra -Wall -W -Wcast-align -Winline -Wmissing-

noreturn -Wpointer-arith -Wshadow -Wsign-compare -Wundef -

Wunreachable-code -Wwrite-strings -Wmissing-field-

initializers -Wmissing-format-attribute”

 Use the debugger (can even serve as a C interpreter)

 Use valgrind, ThreadSanitizer, AddressSanitizer to check for
memory leaks and/or memory access violations.

23

Developing with CPL

Pipeline Seminar 2019

● The Build System – what needs to be maintained?
 configure.ac:

 Package and library version
 Additional feature tests
 Adding or removing files/directories to configure

 Makefile.am:
 Adding/removing source files to/from libraries, programs
 Adding/removing subdirectories
 Adapting compiler/linker flags and options

 (acinclude.m4)

24

Developing with CPL

Pipeline Seminar 2019

● Support for multi-threaded recipe execution:
 Multi-threaded pipeline recipes may be implemented using

OpenMP. Only what is compliant with the baseline compiler may be
used!

 CPL is thread-safe (unless otherwise stated), i.e. it properly
manages access to it's internal data structures, it does not do this
for objects created by the recipes

 Managing access to shared data structures in the recipes is your
responsibility and requires an appropriate design

 If there is no need to use it do not use it

 If you use it use thread analysis tools extensively!

25

Developing with CPL

Pipeline Seminar 2019

● Best Practices, Tips & Pitfalls:
 CPL is not designed to update parts of an existing file other than adding

FITS extensions at the end.

 Do not use high level data objects to feed low level functions, but ‑ ‑
progressively use less complex objects the lower a function is in the
hierarchy.

 Be explicit when writing code and express your intentions in the code, e.g.
use const when you deal with objects that should not be modified.

 Avoid obscure constructs, e.g. pointer aliasing.

 The number of function parameters should be small. If necessary related
parameters should be grouped into structures.

 Function implementations should be reasonably short (no “spaghetti code”).
If necessary it should be divided into individual tasks coded as individual
functions.

26

Developing with CPL

Pipeline Seminar 2019

● Best Practices, Tips & Pitfalls (cont.):
 Take the time to write good source code documentation, in particular be

verbose when it comes to the dark corners in your code.

 Take the time to write concise but informative log-messages when you
commit changes to the repository.

 Commit often and individual changes. Avoid committing massive changes
as a single commit.

27

Developing with CPL

Pipeline Seminar 2019

● Development of CPL:
 Development is mostly driven be the needs of new instruments, e.g.

thread-safety was required for MUSE → ELT Instruments

 If new features are needed please keep the CPL release cycle in
mind (once per year, around the end of March for major updates)

 If you need a new feature, ask us and ask us as early as possible

 Future developments:
 Python bindings for CPL/HDRL (approved)
 HARMONI, MICADO, METIS (TBD)

28

Roadmap

Pipeline Seminar 2019

● Questions?

29

Questions

Pipeline Seminar 2019

● Readability:
 Maximum characters per line is 80.

 No tabulators may be used for indentation.

 The indentation width is 4 spaces.

 Non-empty blocks shall use K&R style

 Only one statement per line.

 Use blanks around all binary operators, except “->” and “.”.

 Use a blank after comma, colon, semicolon, control flow keywords.

 Don't use blanks between an identifier and “(“, “)”, “[“ and “]” or
before a semicolon.

 No spaces after pointer operators “*” and “&”. In variable
declarations the “*” shall be placed adjacent to the variable name.

30

Coding Standards

Pipeline Seminar 2019

● Naming Conventions:
 General:

 Function and variable names shall be all lower case letters, with
words separated by an underscore.

 Use clear and informative names for functions and variables.

 Functions:
 Function names must be prefixed with the instrument acronym

followed by an underscore.
 Function names must identify the action performed, or the

information provided.

 Variables:
 Variable names should be short, but meaningful.
 Variables should be named with their content.

31

Coding Standards

Pipeline Seminar 2019

● Naming Conventions (cont):
 File Names:

 Header file names have the extension .h
 Source file names have the extension .c
 Header and source file names are prefixed with the instrument

acronym followed by an underscore.

 Other Names:
 Preprocessor symbols and enumeration constants should be all

upper case letters, with words separated by “_”.

32

Coding Standards

Pipeline Seminar 2019

● Types, Variables, Operators and Expressions:
 Use the same name for the structure tag and the typedef name, i.e.:

 typedef struct my_type my_type;

 Avoid global variables.

 Variables should be declared in the smallest possible scope.

 All variables have to be initialized when they are defined (as far as
possible).

 Don't write code that depends on the byte order, or word alignment
boundaries of an architecture.

33

Coding Standards

Pipeline Seminar 2019

● Types, Variables, Operators and Expressions (cont):
 Do not use macros unless it is absolutely necessary.

 Whenever possible use enumeration constants rather than
preprocessor symbols.

 Avoid writing code that requires excessive stack sizes:

function(int huge)
{
 double a[huge];

 ...

34

Coding Standards

Pipeline Seminar 2019

● Functions:
 ANSI C function prototypes must be used.

 In the definition the function return type should appear on a
separate line

 All functions should return an error code (as far as possible).

 If no return value is required, a function has to be declared void.
The return statement is still required.

● Statements and Control Flow:
 Always provide a default case for switch statements and break

each case of the switch statement.

 Always use braces to delimit blocks of if, for, while and do ...
while statements (even if it is just one line or empty).

 Don't use goto unless absolutely necessary (i.e. never).

35

Coding Standards

Pipeline Seminar 2019

● Code Comments:
 All files, in particular source and header files must begin with the standard

header (cf. GPL).

 Functions, global variables, enumerations constants shall be documented.

 Public functions, data types, enumeration constants, modules must be
commented so that a reference manual can be build using doxygen.

 Block comments should be preceded by 2 and followed by 1 empty line,
have the same indentation as the code it describes and look like:

 /*

 * ...

 * ...

 */

 Do not break in-line comments into multiple lines.
 /*...
 ...
 ... */

36

Coding Standards

Pipeline Seminar 2019

● Header files:
 Header files should be used as interface specification for a software

module.

 Use code guards to prevent multiple inclusion.

 Header files shall be self contained.

 It should be possible to use the header files with a C++ compiler.

 In function declarations all parameters shall be named and have the
same name as in the implementation.

37

Coding Standards

Pipeline Seminar 2019

● Header files (cont.):

 #ifndef FILE_NAME_H
 #define FILE_NAME_H

 #ifdef _cplusplus

 extern “C” {

 #endif

 ...

 ...

 #ifdef _cplusplus

 }

 #endif

 #endif /* FILE_NAME_H */

38

Coding Standards

Pipeline Seminar 2019

● Source Files:

 The encoding should be “utf-8” (applies to header files too).

 Non-ASCII characters should be rare and must use UTF-8
formatting.

 All comments in source files must be up to date at any time.

 Code comments must be in English.

 Comments should give a synopsis of a section of code, outline the
steps of an algorithm, or clarify a piece of code when it is not
immediately obvious what or why something was done.

 Don't comment what is already clearly expressed by the code itself,
for example:

 /* return from the function */

 return 0;

39

Coding Standards

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

