ADASS XIIT
ASP Conference Series, Vol. XXX, 2004
F. Ochsenbein, M. Allen and D. Egret eds.

Transparent XML Binding using the ALMA Common
Software (ACS) Container/Component Framework

Heiko Sommer and Gianluca Chiozzi

European Southern Observatory, Karl-Schwarzschild-Strafie 2, D-85748
Garching b. Minchen, Germany, Email: hsommer@eso.org

David Fugate

National Radio Astronomy Observatory, 1003 Lopezville Rd.,
NM 87801, USA

Matej Sekoranja
Cosylab Ltd, Teslova 30, SI-1000 Ljubljana, Slovenia

Abstract. ALMA software, from high-level data flow applications down
to instrument control, is built using the ACS framework. The common
architecture and infrastructure used for the whole ALMA software is pre-
sented at this conference in (Schwarz, Farris, & Sommer 2003).

ACS offers a CORBA-based container/component model and sup-
ports the exchange and persistence of XML data. For the Java program-
ming language, the container integrates transparently the use of type-
safe Java binding classes to let applications conveniently work with XML
transfer objects without having to parse or serialize them.

This paper will show how the ACS container /component architecture
serves to pass complex data structures, such as observation meta-data,
between heterogeneous applications.

1. XML Data by Value

In any distributed software system, it is vital to reduce the number of fine-
grained calls accessing remote data. The usual strategy is to pack together
some cohesive set of data items and transmit them over the network at once.
This has been described in the J2EE Transfer Object Pattern!, or in (Fowler
2002). The gained performance has to be traded in for a somewhat compromised
OO design though.

Transporting groups of data by value not only helps avoid network conges-
tions and improve overall system performance; migrating such data from one
machine to another also decouples the two computers, which adds to the ro-
bustness of the system. If the computer which originally supplied the data goes

'http://java.sun.com/blueprints/corej2eepatterns/Patterns/
TransferObject.html

Transparent XML Binding using ACS 2

down, the other machine will not be affected if it has retrieved all required data
by value before.

Since ALMA software will be implemented in various languages (currently
C++, Java, Python), CORBA was chosen as the middleware the ACS frame-
work is built upon. There are several possibilities to transport data by value
using CORBA. In the past, for the sake of language independence, CORBA ar-
chitecture focused on remote service invocations or by-value transport of simple
data types (primitive data or structs of primitive data); recently it has started
to offer a means for transporting more complex data structures by-value, using
CORBA value types?.

For several reasons we decided to use XML as the format for ALMA transfer
objects:

e XML avoids difficulties with CORBA’s built-in types described in (Schmidt
& Vinoski 2001);

e XML as a serialization format can be used not only to send data by value
between applications, but also to store that data persistently in a file or a
database;

e XML schema allows for data declaration (constraints etc.) more powerful
than those available using CORBA value types;

e XML data can be logged directly, and can easily be injected manually into
the software system, for example for running unit tests, or to mimic an
application that has not yet been built.

ALMA subsystems specify their interfaces in CORBA IDL. To send simple
data by value, the built-in data types of CORBA can be used. For more com-
plex, usually hierarchical data, the data definition can be provided outside of
the IDL in an XML schema file, and has to be referenced in the IDL. Thus the
architecture lets ALMA developers choose between sending data through effi-
cient binary CORBA transport, or using somewhat slower, but more powerful
XML plain-text transport. The latter option is expected to be chosen for nested
structures such as an observing project and its scheduling blocks, where the size
is less than 100 kB.

XML transport is realized in IDL with a CORBA struct containing a
string for the serialized XML, plus complementary administration meta data,
e.g. a unique ID.

Very large data structures should be broken up into smaller groups, each
described by its own XML schema. For example, the observing project, the
proposal, and the scheduling blocks are each modeled separately. A balance
must be found between quickly accessing large parts of the data tree in one
call, and not transporting too much data at a time when only a part of it is
needed. The resulting separate pieces of XML data reference each other using
their unique IDs.

*http://www.omg.org/cgi-bin/doc?formal/02-06-41

Transparent XML Binding using ACS 3

El D ObsPrepEntities. jar

[#-H alma.entity xmlbinding.obspraject

8 alma.entity xmibinding.obsproject. types
-H alma.entity xmibinding.obsproposal

3 -H alma.entity xmlbinding.sbexecrec

=] H alma.entity xmibinding.schedblack

. @[Centervelocity.class

! CentervelociyDescriptor.class
CorrelatorSetupT_SB.class

-[if] CorrelatorSetupT_SBDescriptor class
EntityTypeMameT.class

Entity TypeMarmeTDescriptor.class tine
FieldPatternT.class =@ Schedelock
i FieldPatternTDescriptor.class @ SchedBlock()

@[] FieldSourceT class addObsTarget(TargetT)

- @[l FieldSourceTDescriptor.class addObsTarget(int, TargetT)
H - FieldSpecT class ITarget(TargetT)
@[] FieldSpecTDescriptor.class addPhaseCalTarget(int, TargetT)
FrequencySetupT_SB.class addPointingCalTarget{TargetT)

[#] FrequencySetupT_SBDescriptor.class addrointingCalTarget{int, TargetT)
ObsProcedureT.class AdSBEvarbarBafChEvarRacRafT.
-1 ObsProcedureTDescriptor.class chedBlock.class X I

7 [f] RectangleT_SB.class

+ RertangleT_SBDescriptor.class
-] ReferanceSystem.class
ReferenceSystemDescriptor.class
B ScarDirection.class
ScanDirectionDescriptor class

o0 0090

+ @param vPhaseCalTarget

(Y]

public void addPhaseCalTarget (TargetT vPhase
throws Jjavea. lany. IndexOucOfBoundsExcepri

1
_phaseCalTargetList.add (vPhaseCalTarget)
y //-- void addPhaseCalTarget (TargetT)

Figure 1. Generated binding classes seen in the Eclipse IDE.

2. XML-Java Binding Classes

XML binding frameworks generate native language binding classes from XML
schemas as part of the build process. The binding class instances form in-
memory representations of XML documents that belong to the schemas. In
Fig. 1 we see the classes compiled from the scheduling block schema.

Applications are written against the type-safe accessor and manipulator
methods of these binding classes, thus getting coerced by the compiler to follow
any changes in the data model, defined in the schemas.

Note that with the standard representations of XML (such as DOM), ap-
plication code would contain generic calls like addChildNode instead of add-
PhaseCalTarget, thus defying compile time checking.

ACS harnesses Castor® for XML binding. Another potential candidate,
SUN’s JAXB#, unfortunately lacks the ability to serialize and parse incomplete
XML data. For C++ and Python, we have not yet found satisfactory binding
frameworks.

3. Transparent Serialization

ALMA software is written as components that run inside ACS containers, as
described in (Schwarz et.al. 2003). Each component specifies and implements
one CORBA IDL interface; the methods of that interface may use XML data
as parameters or return values (see section 1.). However, with a straightforward

Shttp://www.castor.org/xml-framework.html

“http://java.sun.com/xml/jaxb/

Transparent XML Binding using ACS 4

. Operations IF i

impr’/ (FIat-XML) -
< impl .
CORBA remoting

Stub

> Skeleton (Tie)

delegates

delegates Skeletonlmpl

(mapping)
e
impl. delegates

impl

Proxy

Figure 2. Classes with XML data. To the (green-)shaded classes,
XML data appears as binding classes, to others as serialized strings.

approach, both the client and the component implementation would encounter
XML as a string rather than as a collection of binding class instances.

In Fig. 2, we see the “Transparent-XML” interface, which ACS generates
using a custom IDL compiler. It resembles the output of the standard IDL com-
piler (“Operations-IF”), except that binding classes are substituted for XML-
strings. Independently of each other, the component or one of its clients may be
programmed against that interface. The container will in this case receive the
“flat” XML string from the CORBA ORB, instantiate the appropriate binding
classes in its mapping layer, and pass them on to the application.

The tedious task of XML parameter conversion is removed from the appli-
cation code, and the developers can trust the compiler that at runtime no XML
data of unexpected format will be received. The component developer does not
even need to know that XML is the underlying interchange data format.

Communication between collocated components can be shortcut by their
container, so that binding class instances are passed without going through the
serialization-parsing cycle.

The presented ADASS poster is available at http://www.eso.org/projects/
alma/develop/acs/OtherDocs/ACSPapersAndSlides/index.html. It contains dia-
grams that will further illustrate the technique.

References

Schwarz, J., Farris, A., & Sommer, H. 2003, The ALMA Software System, this
volume, [O8-1]

Fowler, M. 2002, Patterns of Enterprise Application Architecture (Addison-
Wesley Pub Co)

Schmidt, D. C. & Vinoski, S. 2001, CORBA and XML, Parts 1 2 3, C/C++
Users Journal

