
ACS, a CORBA-based Common Software
for ALMA and other projects

G.Chiozzi* , B.Gustafsson*, B.Jeram*, P.Sivera* M.Plesko** , M.Sekoranja** , G.Tkacik** ,
K.Zagar** , D.Fugate***

*ESO, ** CosyLab, *** NRAO

ABSTRACT

The Atacama Large Millimeter Array (ALMA)[1] is
a joint project between astronomical organizations in
Europe and North America. ALMA will consist of at
least 64 12-meter antennas operating in the millimeter
and sub-millimeter range, with baselines up to 14 km.
It will be located at an altitude above 5000m in the
Chilean Atacama desert.

The ALMA Common Software (ACS)[2][3]
provides a software infrastructure common to all
partners and consists of a documented collection of
common patterns and of components implementing
those patterns.

The heart of ACS is an object model based on
Distributed Objects (DOs), implemented as CORBA
objects. The teams responsible for the control system
development use DOs as the basis for components and
devices, like an antenna mount control.

ACS provides common CORBA-based services like
logging, error and alarm management, configuration
database and lifecycle management. A code generator
creates a Java Bean for each DO.

ACS is based on the experience accumulated in the
astronomical and particle accelerator contexts, reusing
and extending concepts and components.

Although designed for ALMA, ACS has the
potential for being used in other new control systems,
since it implements proven design patterns using state
of the art, stable and reliable technology. Like all
software developed for the ALMA project, ACS
follows the GPL licensing scheme to foster reuse and
collaboration in the scientific community.

This paper presents status and architecture of ACS.

1. THE RATIONALE FOR A COMMON
SOFTWARE

Since its beginning, the ALMA project [1] has been
characterized by complexity due to the wide
geographical distribution of its development teams and
their diverse development cultures.

To alleviate these problems, we have introduced a
central object oriented framework, the ALMA

Common Software (ACS)[6]. It is located in between
the ALMA application software and other basic
commercial or shared software on top of the operating
systems. It provides a well-tested platform that embeds
standard design patterns and avoids duplication of
effort. At the same time it is a natural platform where
upgrades can be incorporated and brought to all
developers. It also allows, through the use of well-
known standard constructs and components, other team
members who are not authors of ACS to easily
understand the architecture of software modules,
making maintenance affordable even on a very large
project.

In order to avoid starting from scratch, we have
evaluated emerging systems that could provide a good
basis for ACS and would bring to the project
CORBA[13] and other new technological know-how.
We then began a fruitful collaboration between ESO
and JSI that, through exchange of experience and ideas
from our previous projects has brought us to the
concepts and implementation of ACS. For more details
on the considerations that have led to the concepts
behind ACS see [2], [7] and [8].

During the first phases of the project, we have
concentrated on the aspects related to the Control
System for ALMA, driven by the requirements of the
ALMA Test Interferometer[5]. Now the ACS team is
working with the ALMA Architecture team to
seamlessly extend ACS to cover the needs of the
higher-level software sub-systems[4].

2. ACS ARCHITECTURE

ACS is based on the object oriented CORBA
middleware, which gives the infrastructure for the
exchange of messages between distributed objects and
system wide services [9]. Whenever possible, ACS
features are implemented using off-the-shelf
components; ACS itself provides in this case the
packaging and the glue between these components. At
the same time, whenever convenient ACS hides all
details of the underlying mechanisms, which use many
complex features of CORBA such as queuing,
asynchronous communication, thread pooling, life-
cycle management, etc.

CORBA Middleware

Command
System

Error System Logging System

C++ Application
Framework

FITS libraries

Astro l ibraries

UIF libraries

Applications

BACI

Scripting

Alarm System

Time SystemData channel

Archiving
System

ACE

MACI Manager

Development
tools

2 - Core packages

1 - Base tools

3 - Services

4 - Hi-level APIs and
tools

...more to come...

Device Drivers

Java
Component

Java
Container

Config DB

Serialization
Plugs

Java Application
Framework

ACS Installer

Activator

CORBA MiddlewareCORBA Middleware

Command
System

Command
System

Error SystemError System Logging SystemLogging System

C++ Application
Framework

C++ Application
Framework

FITS librariesFITS libraries

Astro l ibrariesAstro l ibraries

UIF librariesUIF libraries

ApplicationsApplications

BACIBACI

ScriptingScripting

Alarm SystemAlarm System

Time SystemTime SystemData channelData channel

Archiving
System

Archiving
System

ACEACE

MACI Manager MACI Manager

Development
tools

Development
tools

2 - Core packages2 - Core packages

1 - Base tools1 - Base tools

3 - Services3 - Services

4 - Hi-level APIs and
tools

4 - Hi-level APIs and
tools

...more to come......more to come...

Device DriversDevice Drivers

Java
Component

Java
Component

Java
Container

Java
Container

Config DBConfig DB

Serialization
Plugs

Serialization
Plugs

Java Application
Framework

Java Application
Framework

ACS InstallerACS Installer

Activator Activator

Fig. 1: ACS Packages

2.1 Component-Container model

The ACS Architecture is founded on the
Component-Container model [15].

Containers provide an environment for Components
to run in, with support for basic services like logging
system, configuration database, persistency and
security. Developers of Components can focus their
work on the domain-specific “ functional” concerns
without having to worry about the “ technical” concerns
that arise from the computing environment in which
their components run.

The division of responsibilities between components
and containers enables decisions about where and
when individual components are deployed to be
deferred until runtime. If the container manages
component security as well, authorization policies can
be configured at run time in the same way.

Commercial implementations of the Component-
Container model are quite popular in industry at
present, with Sun’s Enterprise Java Beans and
Microsoft’s .NET being the prime examples. A vendor-
independent specification, the Corba Component
Model (CCM), is under development, production
implementations do not yet exist. These are rather
comprehensive systems, and require a wholesale
commitment from developers to use the languages and
tools supplied. For our application domain we do not
need all the power offered by such systems and ACS
implements an infrastructure that is more lightweight.
We are anyway committed to move to the CCM as
soon as we find a suitable free implementation.

2.2 ACS Packages

The UML Package Diagram in Fig. 1 shows the
main packages in which ACS has been subdivided. For
more details, refer to the ACS Architecture, available
on the ACS Web Page[2].

ACS has a classical layered architecture, where
packages are allowed to use services provided by other
packages on lower layers and on the same layer, but
not on higher layers.

Each package provides a basic set of services and
tools that shall be used by all ALMA applications.

2.2.1 Base Tools
The bottom layer contains base tools that are

distributed as part of ACS to provide a uniform
development and run time environment on top of the
operating system for all higher layers and applications.
These are essentially off-the-shelf components and
ACS itself simply provides packaging, installation and
distribution support. This ensures that all installations
of ACS (development and run-time) will have the same
basic set of tools.

2.2.2 Core Packages
This second layer ensures standard interface patterns

and implements essential services, necessary for the
development of any application. Among these:
• Basic Access Control Inter face (BACI)

We expect that the ALMA control system will be
mainly implemented in C++, to satisfy performance
and real time requirements. This package provides
the implementation of C++ Components, introducing
the concepts of Distributed Object, Property and
Characteristic [10]. The object paradigm of CORBA
is fully applied: each entity in the control system is
defined as a Component type and is represented by

one specific CORBA interface that subclasses the
base Distributed Object (DO). Each DO is further
composed of Properties that correspond to what are
called controlled points, channels or tags in
Supervisory Control and Data Acquisition systems
(SCADA). Each Property is an object too, described
by Characteristics such as min/max values or units.

• Java Component
Higher-level software, in particular data-flow
applications, will be instead mainly developed in
Java. This package provides a Java implementation
for the Component model. The Java Component
package is currently under design.

• Configuration Database
This package addresses the problems related to
defining, accessing and maintaining the
configuration of a run-time system. For each
Component in the system, there are configuration
parameters that must be configured in a persistent
store and read when the Component is started up or
re-initialized.

• Data Channel
The Data Channel provides a generic mechanism to
asynchronously pass information between data
publishers and data subscribers, in a many-to-many
relation scheme. It is based on the CORBA
Notification Service [13].

• Error System
API for handling and logging run-time errors, tools
for defining error conditions; tools for browsing and
analyzing run-time errors.

• Logging System
API for logging data, actions and events. Transport
of logs from the producer to the central archive.
Tools for browsing logs. It is based on the CORBA
Telecom Logging Service [13].

2.2.3 Services
The third layer implements higher-level services.

Among these:
• Management and access control inter face (MACI)

Design patterns, protocols and meta-services for
centralizing access to ACS services and
Components, to manage the full life cycle of
Components, including persistence, and to supervise
the state of the system [11]. This has been split in
three packages:
o MACI Manager contains the higher-level system

supervisor (Manager).
o Activator implements the C++ Container.
o Java Container implements the Java Container

for higher-level application components. The Java
Container is currently under design.

• Archiving System
API tools and services for archiving and monitoring
data and events.

2.2.4 Application Frameworks and High-level
APIs

The fourth and last layer provides higher-level APIs
and tools. The main goal of these packages is to offer a
clear path for the implementation of applications, in
order to obtain implicit conformity to design standards.
Among these, we mention:
• UIF L ibrar ies

Development tools and widget libraries for User
Interface development. Java user interfaces are based
on the ABeans library that wraps CORBA objects
within Java Beans, which are then connected with
commercial data-manipulation and visualization
Beans using visual tools or programmatically[12].

• ACS C++ and Java Application Frameworks
Implementation of design patterns and to allow the
development of standard applications.

3. ACS DEVELOPMENT STATUS

The development of ACS is driven by the needs of
the teams developing higher-level software, and in
particular now the ALMA Control System.

3.1 ACS Release Policy

Our development cycle foresees one major release
every year, with an intermediate, bug-fix release after
six months. The complete ACS SW Development Plan,
is available on the ACS Web Page [1].

ACS 0.0, released in September 2000 was essentially
a concept demonstration prototype. With the support of
some components taken from the VLT Control
Software it has been used to develop a prototype
control system for the 12m Kitt Peak antenna. This was
successfully tested in December 2000.

ACS 1.0, released in September 2001, was the first
“production release” . It was followed in April 2002 by
ACS 1.1. ACS 1.1 includes an essentially complete
implementation of the BACI, MACI and Abeans
packages, together with Error System, Logging
System, the first elements of the C++ Application
Framework and prototypes for many other packages. It
still relies on some components of the VLT Common
Software including, in particular, the VLT Real Time
Database as configuration database engine.

The next major release, ACS 2.0, is foreseen for
September 2002. The main objectives for this release
are to become fully independent of the VLT Common
Software and to provide a Configuration Database

Engine based on an XML file hierarchy. The Time
System and Notification Channel packages developed
by the TICS team will be integrated into ACS. All
existing components will be extended and stabilized.

We have started to work in parallel on the evolution
of ACS to accommodate the needs of the ALMA Data
Flow Subsystems (Archiving, Scheduling, Observation
Tools, Pipeline, etc.). After ACS 2.0 the first
prototypes for the Java Component-Container packages
will be made available. Future releases will concentrate
more on performance and scalability.

3.2 ACS Suppor ted Platforms

ACS is supported for ALMA on Linux and
VxWorks. An MS Windows version is running at the
ANKA Synchrotron. A Solaris version is used
internally at ESO for testing purposes. Other platforms,
like Real Time Linux, are being investigated, but the
porting is expected to be very easy thanks to the ACE
[14] operating system abstraction layer.

3.3 ACS Installations

ACS 1.1 is used in more than 10 sites worldwide for
different projects mostly, but not exclusively, related to
ALMA:
• For the development of TICS, the ALMA Test

Interferometer Control System[5]. The first test
antenna is being installed and tested at the VLA site.

• For the development of the APEX (Atacama
Pathfinder Experiment), a radio telescope built by
the Max Planck Institute for Radioastronomy in
Germany, with the collaboration of ESO.

• For the development of the Japanese ALMA
Antenna Prototype.

• It is in operation at the ANKA Synchrotron in
Karlsruhe, (Germany), in its Windows NT porting.
Some ACS components, like the Abeans libraries are

used by other projects as well and we are discussing
the possibility of collaboration with other groups.

4. CONCLUSION

ACS has been developed keeping in mind the needs
of a wide range of astronomical and accelerator control
projects. It runs readily on many platforms and
operating systems and is open source. The complete
code will be available under GNU Public License, is
compiled with the standard GNU gcc compiler, and
includes the sources of the underlying CORBA
implementation, TAO[14], which is also open source.
A part of the service client applications are written in
Java, using a free Java ORB. We are therefore
convinced that many other projects can use ACS. At

the same time, we think that a wider user base can
provide us with very valuable feedback.

ACKNOWLEDGEMENTS

The ACS project is managed by ESO in
collaboration with JSI. This work is the result of many
hours of discussions, test and development inside our
groups and in the various ALMA centers at NRAO,
IRAM and Bochum.

REFERENCES

1. ALMA Web page, http://www.mma.nrao.edu/
2. ACS web page and online documentation,

http://www.eso.org/~gchiozzi/AlmaAcs
3. G.Chiozzi et el., CORBA-based Common

Software for the ALMA project, SPIE conference
4848, Kona, Hawaii, Aug. 2002

4. J.Schwarz, G.Raffi, “ALMA Software
Architecture”, these proceedings

5. R.G.Marson, B.Glendenning, “ALMA Test
Interferometer Control Software” , these
proceedings

6. G.Raffi, G.Chiozzi, B.Glendenning, “The ALMA
Common Software (ACS) as a basis for a
distributed software development” , ADASS XI,
Victoria, BC, Canada, Sep. 2001

7. M. Plesko, “ Implementing Distributed Controlled
Objects with CORBA” , PCaPAC99, KEK,
Tsukuba, Jan. 1999

8. B. Jeram et al., “Distributed Components in
Control” , ICALEPCS 1999, Trieste, Nov. 1999

9. G. Milcinski et al, “Experiences With Advanced
CORBA Services” , ICALEPCS 2002, San Jose,
CA, Nov. 2001

10. G. Tkacik et al., BACI specs, see [2]
11. K. Zagar et al., MACI specs, see [2]
12. G. Tkacik et al., “Java Beans of Accelerator

Devices for Rapid Application Development”,
PCaPAC99 workshop, KEK, Tskukuba, January
1999

13. CORBA Home Page at OMG:
http://www.corba.org/

14. ACE/TAO Home Page:
http://www.cs.wustl.edu/~schmidt/TAO.html

15. M.Völter, A.Schmid, E.Wolff, Server Component
Patterns, Wiley, Summer 2002

