SCM-0001
January 1991

Milan Scientific Center

AGXMM - A C Library for Extended Memory Manager
User’s Manual

IBM Internal Use Only A. Bondi, G. Chiozzi

IBM Internal Use Only

AGXMM - A C Library for Extended Memory Manager
User’s Manual

by

A. Bondi', G. Chiozzi?

! IBM Milan Scientific Center, Milan, Italy
email: bondi@miivmsc

2 IBM Muilan Scientific Center, Milan, Ttaly
ematil: chiozzi@ milvmsc

IBM Internal Usc Only

Contents

Chapter 1. Preface

Chapter 2. AGXMM - A Cibrary for eXtended Memory Manager
2.1 Introduction
2.2 OVEIVICW . . oL
2.3 Software and Ilardware requirements. _ ..o
24 Usmg AGXMM L 00
2.5 Developping AGXMM L 00 0000
2.6 Installing AGXMM 0
2.7 AGXMM Tiles . . 0

Chapter 3. AGXMM Technical Reference . 0 0 000 0 0000000
310 BXTENDED MEMORY SPLECHFICATION 0 00000 .
00 XMS Deviee Driver - oo oL e
302 Tiabrary structure . . 0L
3.2 Basic functions layer . . oL
32,0 Imtializing XMM 0 0 0L
3.2.2 Getting information . ..o
3.2.3 Allocating and freeing HXtended Memory Blocks oL
3.2.4 Data exchange between conventional and eXtended Memory 0 0. 000
3.3 Pseudo-Files e
331 Introduction ..
3.3.2 Psecudo-liles System initialization Lo
3.3.3 Access to Pscudo-Tiles .0 0oL
34 Virtual Atrays oL
340 Introduction 0L
3.4.2 Initializing the Virtual Arrays manager L
3.4.3 Creating Virtual Arrays0
344 Access NOALION . . L L L e
345 Closing Virtual Arrays 0 0.0
3.4.6 Caullons
3.4.7 Frror management for Virtual Arrays . . 0 00 0L

Chapter 4. AGXMM Function Reference . . . 0 0 . 0 00 0oL
4.1 XMM files imb L .00
42 XMMACCESS . . .
4.3 XMMACCESS vV ArTay . Lo
4.4 XMMAToC ..
4.5 XMMUIose o ..
4.6 XMMClose v oarray
4.7 XMMCOOPY . . e
4.8 XMMcorcleft . 00
4.9 XMMCreale v arraly 0
410 XMMUIirorMsg .o
411 XMMUEast_Access Vv arry ... oL
412 XMMIirce . . o0 o
413 XMMlandlelnfo 0000000 o
414 XMMInit v _array . . .
4.15 XMMlnstalted . 000 00
416 XMMLoad v array L
4.17 Maplirror . . L
4.18 XMMmaxblock .. 0

Contents

IBM Internal Use Only

419 XMMOpen 52
420 XMMRead 54
421 XMMReAlloc e 56
422 XMMSeck . . . 58
423 XMMTell e, 60
424 XMMWrite e e 62
425 XMMVersion e 64
Appendix A. Table of functions per library layer L 67
Appendix B. Example Programs Source Files o000 69
B.1 AGXMMTST.C - general test program. s 69
B2 AGXMFTST.C - Pscudo Filc use example program 76
B.3 AGXMVTST.C - Virtual Arrays use example program 79
Appendix C. Bibliography 85

iv User's Manual

IBM Internal Use Only

Chapter 1. Preface

Purpose of this function library is to overcome the well known DOS limitations regarding memory manage-
ment (640 kbytes of memory and 64 kbytes -segment size- max for a single data block). We paid a special
attention in order to create a fricndly environment in which the user can handle eXtended Memory in a
transparent way just as if he was working with conventional files or arrays.

This library is based upon the cXtended Memory Specification (XMS) as provided by Microsoft Corp. and
requires an eXtended Memory Manager (XMM) such as [JIMEM.SYS.

At the moment, only a small number of functions have been developped, but they already permit a full use
of eXtended Memory; they can be divided into:

+ basic XMM access functions.

¢ Pseudoliles functions: to use XMM as a simple but fast file system.

» Virtual Arrays functions: to address large arrays stored in cXtended Memory in a transparent way.

We plan to improve our library in order to satisfy more complex needs. User’s suggestions are welcome;
you should refer to the following addresses:

Alessandro Bondi: BONDI at MIT.VMSC; Phone: + 39(2)754R.4147
Gianluca Chiozzi: CIHTOZ7Z1 at MILVMSC; Phone: + 39(2)7548.4516
IBM Semea - Centro Ricerca di Milano - 20090 Segrate (M) - Haly

Chapter 1. Preface |

IBM Internal Use Only

2 User's Manual

IBM Internal Use Only Introduction

Chapter 2. AGXMM - A C library for eXtended Memory
Manager

21 Introduction

This manual' is divided in three parts:
» This chapter: a gencral introduction to AGXMM
« Chapter 2: technical refcrence,
« Chapter 3: functions refercnee.

The first part contains general information on how to use the library, such as supported compilers, software
and hardware requirements and 50 on.

Information on how the library is structured and implemented and simple general examples are given in the
second chapter, while the third one is a complete list of all the implemented functions.

Several Technical Notes are added throughout the text in order to explain in more detail some topics that
may be relevant for those wishing to extend the library. ‘I'he mcre user will not probably need to read them,
and the whole manual can be profitably understood skipping them at all.

2.2 Overview

AGXMM has becn created in order to put the eXtended Memory installed on 80x86 based personal com-
puters at full disposal of C programs developped under DOS operating system. AGXMM is currently sup-
ported for the {ollowing compilers:

Compiler Compiler 1D
IBM C2 VI1.10 IBMC2
Microsoft C IBMC2
Borland TURBO C V2.0 TURBOC

For these compilers, precompiled libraries are available. [lowever, everybody is welcome to port AGXMM
functions to other compilers.
The library is available in two distribution versions:

« Precompiled library

« Source code

' This shows how the special characters used in this document look like on your printer (if they are printed at all).

Ve oy

Curly braces:

Square brackets: ‘P "
Vertical bar (logical OR in C): i
Tilde (binary NOT in C): co!
Caret (binary XOR in C): 'L

Chapter 2. AGXMM - A C library for eXtended Mcmory Manager 3

Introduction IBM Internal Use Only

2.3 Software and Hardware requirements.

* Hardware
— IBM PS/2 with eXtended Memory Expansion Card

« Software
— An eXtended Memory Manager (such as Microsoft HIMEM.SYS)
— A C compiler? (scc above for supported list)

2.4 Using AGXMM
Using AGXMM is simple. Only a few things are nceded:

Reading and understanding the AGXMM reference manual.

Installing AGXMM on your syster just to use it.

Installing an ¢Xtended Memory Manager (such as Microsoft’s ITIMIEM.SYS)
Defintng the Compiler 1D symbol.

Including the file “agxmm.h” in your C source.

6. Linking the AGXMM library and object files.

The AGXMM include file “agxmm.h” should be included at the end of the other files included. The
AGXMM library should be linked as onc of the first librarics. The compiler 1D must be defined as a pre-
processor symbol with the value | (usually using the -ID option of the compiler).

L hWN -

2.5 Developping AGXMM

Users of AGXMM are encouraged to develop it. The following is needed:

1. One or more of the supported C compilers.
2. Installing AGXMM on your system to develop it.

Whenever a new function is added to AGXMM, the following rules should be obeyed:
» A function prototype must be added to “agxmm.h”.

» When ncw types, structures, constants, etc. appear at the function interface, they must be defined in
“agxmm.h”.

o All new identifiers (function names, type namcs, various kinds of preprocessor names) should follow
well-thought naming conventions, which are up to the developper. A common practice is to use a
unique prefix for the names. 'Uhe new identificrs must not conflict with any previously defined identifier
in the standard libraries for the particular compiler.

+ Structures must be independent of whether structure packing is used or not.

The following are good sources to get information about functions already defined:

+ C libraes of the most popular compilers (Borland TurboC V2.0+, IBM C/2 V0L.1+, IBM C/AIX,
Untx System V)

¢ ANSI C Standard
« IBM SAA CPI C Reference

2 XMM is necessary in the presence of large memory demand, so the library has been developed to work under large
memory model; however it is possible, with small modifications, (o usc it under different memory models.

4 User's Manual

IBM Internal Use Only Introduction

2.6 Installing AGXMM
AGXMM comes in two levels of detail:

» As a user archive for a specific compiler.

¢ As a source archive.

In order to use AGXMM, only the user archive for that compiler is nceded. In order to develop AGXMM,
only the source archive js needed. To install the source archive, download it into any subdirectory.

2.7 AGXMM Files

We think it useful to provide a general list of the source files that constitute the library.

Chapter 2. AGXMM - A C library for eXtended Memory Manager 3

Introduction IBM Internal Use Only

Filename Description Only source arc.

INCLUDE FILES
agxmm. h Main include file

C SOURCE FILES

aglibeng.c English language messages

agxmm. c Basic XMM functions. X
To be compiled ONLY in TURBOC
for C2 link agxmm.ob]

agxmmfil.c Pseudo-Files functions X
agxmmvar,c Virtual arrays functions X
calchyte.c Used by agxmm.obj to bhe compiler X

independent

C EXAMPLE FILES

agxmftst.c Example program to test Pseudo File functions
agxmmtst.c Example program to test library

agxmvtst.c Example program to test virtual arrays
LIBRARIES

agxmmc2.11ib Functions library for IBM C2 1.

1
agxmmtc.1ib Functions library for TURBOC 2.0

OBJECT FILES
agxmm, obj Basic XMM functions .obj file X
to be linked when using C2 compiler

TC PROJECT FILES
agxmmtst.prj TURBOC project fiie for agxmmtst.c X

compiled from library sources

BATCH FILES

aglibc2.bat To wake library from sources X
with IBM C2

aglibtc.bat To make 1ibrary from sources X
with TURBOC

agxmmtst.bat To compile agxmmtst.c program with IBM (2 X

from library sources
OTHER FTILES

batcoll.txt Collection of example batch and
TURBCC praject files

6 User's Manual

IBM Internal Use Only AGXMM Technical Reference

Chapter 3. AGXMM Technical Reference

3.1 EXTENDED MEMORY SPECIFICATION

The increasing demand of memory, even for PC application programs, makes the 640Kb limit of MS-DOS
too narrow.

The ¢Xtended Memory Specification (XMS) [1] defines a software interface that permits to manage memory
areas not usually availablc to MS-1OS operating system.

Technical nole 1:

XMS allows applications to allacale, resize and [rec three kinds ol memory blocks:
* Fxtended Memory Blacks (IEMB), that is physical memory placed at addresses above 1088Kb;
¢ fligh Memory Area (1IMA), that is physical memory placed between 1024Kb and 1088Kb.

"The addressability of this arca stems from how the MS-DOS manages memory. FIMA corresponds 1o the 64Kb segment
addressed by the value OxIFTHI7 of the segment register. 'Fhere exists a bus line, named A20, that controls how these
addresses arc physically mapped on memory; XMS provides a hardware independent management of this line. By delault,
line A20 is disabled so that [TMA is not used as such, bul is remapped onto the first memory segment (locations 0000:0000
to 0000:FF I T); oltherwise, Lhe area is seen as a further physical segment above | Mb.

Some applications assume (hat memory wraps around the IMb limit (A20 disabled), so the programmer should take care
to tet it down after use.

¢ Upper Memory Blocks (UMRB), that is physical memory placed between 640Kb and 1024Kb.

Up o now., Lhis library provides functions for the support of FMB only.

3.1.1 XMS Device Driver

In order to use XMS on your computer you must first install the proper device driver, that is an eXtended
Memory Manager (XMM). As an cxample, we will deseribe the procedure to install the standard Microsoft
prototype (IIIMEM.SYS):

« [dit your CONTIG.SYS file
* Add the line
DEVICE = path\1TIMEM.SYS
where path indicates where the driver is placed
« IPL your system

Technical note 2:

NIMEM.SYS supports the lollowing oplions:
JUMAMIN = n that specifics the minimum size of FIMA thal a program can allocate (0-63Kb, def = 0).
/NUMITANDILES = n that specifies the maximum number ol active XMS handles (0-128, del'=32).

Warning: [TIMEM.SYS may be in conflict with other devices previously installed on your system; if some-

thing goes wrong, check your device drivers installation manuals, with a special attention to other memory
managers, such as I'xpanded Memory Manager. Only one XMM is allowed at the same time.

3.1.2 Library structure

The basic XMS functions for the EMB management constitute the first layer of AGXMM library. There are
in fact two more function layers that have been designed in order to make the use of eXtended Memory
easy.

Onc of them defines the concept of Pscudo-File, that allow 1o set up a simple file system; by calling func-
tions with the same sintax of read, write, seek and tell, one is able to access eXtended Memory as if he was
using standard UNIX strcams.

Chapter 3. AGXMM Technical Reference 7

AGXMM Technical Reference IBM Internal Use Only

The other one provides a friendly programming interface, introducing the concept of Virtual Arrays. [arge
amounts of data, up to 8Mb (by far greater than the 64Kb limit imposed by MS-IDOS), can be organized as
a single array in eXtended Memory and accessed in a transparent way from any C program.
What follows is a brief description of the library structure of the implemented fcatures in each layer:
1. Basic XMS functions:
+ Initialization of XMS.
* Getting information on XMS status.
« Allocation, reallocation and release of an EMB.
* Copy of memory arcas from conventional to eXtended Memory in any possible way:
eXtended Memory «— cXtended Memory
eXtended Memory «— Conventional Memory
Conventional Memory «— Conventional Memory
2. Pscudo-Files support:
e Pseudo-Files system initialization.
* Opcning and closing a Pscudo-Tile.
¢ Random access to Pscudo-TFiles records.
3. Virtual Arrays support:
* Virtual Arrays system initialization.
¢ Virtual Arrays data cxchange with disk files.
» Virtual Arrays elements access.

Besides these subjects, the library provides functions for error management.

3.2 Basic functions layer

3.2.1 Initializing XMM
To use XMM, the first thing to do is to check if the hardware and the driver arc properly set up. This can
be accomplished by calling the function

XMM Access() that also prepares the system to access eXtended Memory.

In case of crror, the global vanable XMMError is set to the FError Code (EC) value. Moreover,
XMM/’\cceqs() returns -1 on error, O if everything 15 OK. For more information on error hand]mg tech-
niques, refer to the section about crror management.

Technical nole 3:

XXMM Access() first checks i the XMM driver is installed by generating a proper soltware interrupt. I the check is successful,
the interrupt routine returns the entry point address ol the function that will be cailed to communicate with XMS. This address
is stored in the Turction pointer

XMM_calk().

Zvery low level XM M function calt will consist of:
¢ filling mictoprocessor registers with proper values; in peneral the AT register will be set to the XMM function op. code.
¢+ calling XMM _call().

¢ pelting return values from registers; usuaily EC is put in register BI..

8 User's Manual

IBM Internal Use Only AGXMM Technical Reference

‘T'he programmer will never need 1o make use of XMM call(), since higher level functions are provided by the library.

3.2.2 Getting information

After initializing eXtended Memory functions. onc may wish to get scveral information about the installed
XMS.

The library provides some functions that permit to query the eXtended Memory Manager.

XMMVersion() returns the version number of the installed eXtended Memory Specification and of
the eXtended Memory Manager along with the status flag of IIMA, i.e. if it is available or not. In order to
know available eXtended Memory on the system, one should use

XMMcoreleft() that, having the same syntax of standard DOS coreleft(), tells how many bytes of free
eXtended Memory remain on your PC. It is important to stress that this memory can be fragmented; the
maximum single block size is obtained by

XMMmaxblock() call.
Information on any allocated FXtended Memory Block (EMB) are given by the function

XMMHaundleInfo() once you have passed to it the identifier of the EMB you are interested in; this
identifier, called handle, is returmmed vpon allocation of the block by the proper function (see below). The
information given by this function concern the size of the chosen EMB, its lock count and the number of
remaining free block handlcs.

‘Technical note 4:

The version numbers of XMM and XMS returned by XMMVersion() are in Binary Coded Decimal format (BCD). With this
convention the hex number 0x456 corresponds to decimal 4.65.

Technical note 5:

The lock count should be 0 in any case with this version of AGXMM In this way an EMB can be freely moved by XMM. To
enable moving, the XMM provides functions (not currently implemented) that set Lhe lock count. This could be useful for
prograins thal address directly eXiended Memory and use A20 line.

3.2.3 Aiiocating and freeing EXtended Nemory Blocks
Three basic functions deal with memory allocation. These are modeled on the standard C functions alloc(),
realloc() and free().

XMMAtoc() allocates an EMB taking ils size as a parameter and rounding it to the nearest upper

kilobyte. Notice that in this way you cannot allocate less than Kb of eXtended Memory, unless you wish to
reserve () bytes, which is a permitted size; the integer value returned by this function is the EMB handle.

An EMB can be resized by calling

XNViMReA oe() and passing to it the proper handle. In the same way as above, the new size is 1Kb
rounded.

Finally

XMMFree() permits to deallocate the eXtended memory previously reserved. [t i1s very important to

XMMTree() all used EMB before cxiting the application, since otherwise this memory will be lost until a
new [IPL.

Technical nole 6:

Chapter 3. AGXMM Technical Reference 9

AGXMM Technical Reference IBM Internal Use Only

The most inleresting feature of ¢Xtended Memory is that it can be allocated whenever an application needs to do that. It is
then possible to create functions that resemble very much the C language functions that manage memory allocation. For
example, XMMReAlloc() can shilt the position of an EMB if its resizing makes it nccessary.

3.2.4 Data exchange between conventional and eXtended Memory
Perhaps the function that the user will employ more often is

XMMCopy() that transfers memory areas from conventional and eXtended Memory in any possible
way. As a parameter, it accepts a structure that contains all the information about the source and the desti-
nation areas, which arc identified by thcir handle. 'The structure that contains all the required information is
called XMMCOPYBLOCK and is defined in agkmm.h by means of the following typedef declaration:

typedef struct /* XMM memory block control structure */
{
unsigned tong bsize; /* XMM mem. blick size (byte) ; even */
int src_Handle; /* XMM memory blck source Handle */
union XMMoff src_off; /* src offs or conv.mem.addr. if Hnd=0 */
int dest Handle; /* XMM memory blck destination Handle */

union XMMoff dest off; /* dest offs or conv.mem.addr if Hnd=0 */

XMMCOPYBLOCK
The meaning of each paramcters is as follows:

bsize it specifies the size of the memory area to be copied; it must be even and, for speed opti-
mization on 80386, should be double-word aligned;

src_Handle it specifics the source IEMB handle obtained from a previous XMMAlloc(); a zero value for
this parameter specifics that the source area is in conventional memory;

src_ofl the interpretation of this parameter depends on the value of the previous one; if src_Handle
contains a non zero handle number, sre_off specifies an offset from the first byte of the
corresponding TMB; in the case in which src_Ilandle is zero, src_off is a pointer to the
starting location in conventional memory. To deal with this double meaning in a clean
way, src_off is defined by a proper union declaration, XMMoff, in agxmm.h:

union XMMoff /* XMM mem. block offset decl. */
{
unsigned long offset; /* XMM block offset */
char *address; /* canventional) memory address */

E
dest_Handle it specifics the destination EMB handle obtained from a previous XMMAIlloc(); the same
as for src_Ilandle applics;

dest_off analogous to src_off declaration.

Analogously to standard C functions of this type, it is not guaranteed that the transfer is successful i the two
arcas overlap, unless the source address is less than the destination one.

3.3 Pseudo-Files

3.3.1 Introduction

In order to store and access data in eXtended Memory by using XMM standard functions, the only way is
to copy data buffers to and from eXtended and conventional memory. This is not a flexible procedure: a
possible way to improve eXtended Mcmory accessibility is to sct up a very simple kind of file system, whose
files are stored in EFMBs and can be opcned, written, read and closed. Such files have been called Pseudo-
[‘iles in order to remember that thcy arc not true filcs, even though the programmer can use functions with
the same syntax and bchaviour of the ordinary file access ones. 'These functions constitute the second layer

10 User's Manual

IBM internal Use Only AGXMM Technical Reference

of AGXMM library; resting on the basic one, they make it possible to use eXtended Memory as a very fast
hard disk.

3.3.2 Pseudo-Files System initialization
After initializing XMM, by means of a call to XMMAccess(), the first step in using Pscudo-Files is to ini-
tialize the Pseudo-File System (PIS) by calling

XMM files_init(). The maximum number of Pseudo-Files that can stay open at the same time is
fixed by the global variable XMM_max_files whose dcfault is set to 10 in the current implementation. To
override this default, a new value can be assigned to this vanable before the call to XMM_files_init(). Notice
that this latter function can be called only once in a single program.

3.3.3 Access to Pseudo-Files
[lach timc the programmer necds to access a new Pscudo-Tile he has to open it using the function

XMMOpen(). which first verifics if there are available Pscudo-Files handles and if there is enough
eXtended Mcmory to hold the file. Tt has been decided to force the uscr to declare the maximum size of the
Pseudo-Tiide as a paramcter of XMMOpen(): in this way, all the requested eXtended Memory can be allo-
cated by the PI'S via a single calf to XMMAlloc() and with no nced to use XMMReAlloc() function, which
is not tmplemented by all XMMs. Duc to this choice, the syntax of XMMOpen() is sligthly different from
the corresponding standard open() function, having one additional paramcter. XMMOpen() returns an
integer number that represents the Pscudo-File handle to be used for each access to it.

The functions that perform read and write operations over a Pscudo-Iile are
XMMRead() and

XMMWrite(); they arc uscd in the same way as ordinary rcad() and write(). The same applies to

XMMTell() and

XMMSecek() with respect to tell() and seck() functions that are used to retrieve and set the logical
pointer position in a filc.

Once a Pscudo-File ts no more necded, it can be closed by mcans of

XMMClose(). Be aware that, once a Pscudo-litle is closed, all data stored in it are definitively lost
and the eXtended Memory is releascd to XMM. The implementation of functions that save and load data
from a standard disk filc and Pscudo-Tiles (and vice-versa) is left to future developments; up to now, the
uscr has to take care of these operations.

What follows is a simple example of a program that uses Pscudo T'iles. It includes system initialization and
Pseudo File open and close procedures. It can be used as a skeleton to develop more complex programs.

#include <stdio.h>
#include <string.h>

#include “agxmm.h"

void main()

{

int PFile Hand = 0;

char *string = "XMM Pseudo Files test string”;

char *string2 = " "
char *fname = "Filename.PF";

Chapter 3. AGXMM Technical Relerence 11

AGXMM Technical Reference

#inciude <stdio.h>
#include <string.h>

#include “agxmn.h"
void main()

int PFile_Hand = 0;
char *fname = “Filename.PF";

/* Tests to see if XHH is installed */
i f((XMMAccess()) 1= NOERRGR)

printf("Unable to Access XIS\n");
exit{));
}

/* Init pseudofiles manager */

Pf(XMH_files_init() !'= NOERROR)
{
printf(XiMErrorisg(XHMError));
exit(1);

}

/* Opens a pseudofile */
if((PFile Hand = XMMOpen(fname, 0, 2050)) == -1)
{
printf(XMMErrorMsg(XHHErvor));
exit(1l);
}

/* The array element to be accessed is XMM_fchain(PFile_Hand) */
printf("CURRENT PSEUDO_FILE STATUS:\n");

printf(" PFile name : %s\n", Xtt_fchainflPFile_Hand".name);
printf(" EMB Handle : %d\n",

XHH_fchainfiPEile Hand".Handle);
prirtf(" Curr. Pos. : %1d\n",

XMM_fchainfiPFile Hand”.offset)
printf(" max PFile size : %1d Kbytes\n",

XHM_fchainfiPFile_Hand".hsize);
printf(" actual PFile size: %1d\n",

XMM_fchainfiPFile_Hand".filesize);

printf(* PFile mode : %d\n",

XMM_fchainfiPFile_Hand“.flags)

/* Closes the pseudo file after use */
if(XMMClose(PFile_Hand) !'= 0)

{
print{{ XHNErrorMsg(XtHError));
exit(1);

printf(“Closed Pseudo File\n");
exit(0);

3.4 Virtual Arrays

3.4.1 Introduction

IBM Internal Use Only

The aim we had in proposing the use of Virtual Arrays was 1o overcome the well known limjt of 64Kb
arrays for C programmers under 1DOS opcerating system; at the same time, Virtual Arrays provide a simple

way to use the eXtended Memory for storing data.

The idea here implemented comes from a paper by M. Tichenor [2] who describes a similar system that uses
disk space to store Virtual Array elements. With the aid of this technique, one can manage large arrays of
data and access them by simple reference using predefined alias and an array index. The system array
manager provides an automatic paging memory mechanism that is completely transparent to the user.

14 Uscr's Manual

IBM Internal Use Only AGXMM Technical Reference

Furthermore we think that programs that have been designed without using Virtual Arrays could be modi-
fied quite easily in order to takc advantage of this technique.

3.4.2 Initializing the Virtual Arrays manager
Since the Virtual Arrays System rests upon eXtended Memory and Pscudo Files System, it is first of all
necessary to initialize XMM and PI'S via subsequent calls to XMMAccess() and XMM _files_init().

3.4.3 Creating Virtual Arrays
The procedure to employ Virtual Arrays can be logically divided into two steps that have to occur in the
following order in a uscr program:

1. the definition of the access macros used to emulate standard array access;

2. the call to the function that actually allocates eXtended Memory necessary for the Virtual array and ini-
tializes the related control structures.

#define statements are used to simplify access notations both to array elements and to complex fields within
them, such as structure clements. One #define is required for each Virtual Arrays used. Tor the sake of
clarity it is perhaps better to begin with the description of the seccond step letting the first one to the next
section. There are three functions that permit the creation of Virtual Arrays according to different needs that
the user may have. They arc

XMMCreate_v_array(), that creates a Virtual Array and makes it available for use,

XMMInit_v_array(), that performs the same operations but uses data contained in an existing
Pseudo lile and

XMMLoad_v_array() that loads a file from disk to eXtended Memory and makes it available as a
Virtual Array.

Since these functions are very similar to each other we will describe only the the first one, which is probably
the most useful (refer to the function reference for a more complete description of all of them). Since the
Virtual Array is stored in a Pscudo I'ile, the first parameter of XMMCreate v_array() is the Pseudo File
name that is used to open it. ‘I'he function calculates also the required size of the Pseudo File on the basis of
the number of elcments, given by the parameter elnum, and of the elements’ size, elsize® [Furthermore, the
function injtializes Virtual array elements, if needed, to the predefined mask fillchar. To optimize access
performances, the function accepts two additional parameters: the buffer size and the number of elements per
segment. The Virtual Array manager access array elements via a paging algorithm: a certain number of ele-
ments are stored in a buflfer, placed in conventional memory, whose size i3 defined by the parameter bsize;
moreover, this buffer is divided into logical segments that contain a number of consecutive elements of the
virtual array, that is given by the parameter segsize. I'ach time an element is referenced, the manager checks
if it 1s already placed in the buffer and, if not, loads it from eXtended Memory, swapping a whole segment;
as a consequence, the aceess of sequential elements takes benefit from large segments, while random access is
faster with smaller segments. 'The buffer size, whosc upper limit is 64 Kb, depends mainly on the available
amount of conventional memory and does not affect the performances in a sensible way. In order to opti-
mize the usc of the buffer memory, bsize, segsize and elsize should be balanced so that bsize is the nearest
posaible to a multiple of the product of segsize and elsize. XMMCreate v_array() returns a pointer to the
Virtual Array Control Structure of type

3 As previously noticed, the funclion XMMReAlloc is not supporicd by all the XMM, so it has been chosen to avoid
its use; as a consequence, the Pscudo File that holds the Virtwal Array is of fixed dimension; by using dynamic size
Pscudo Files virtual arrays of dynamic dimension could be easily implemented.

Chapter 3. AGXMM Technical Reference 15

AGXMM Technical Reference IBM Interpal Use Only

XMM_VACS which contains all the relevant information to be used by access functions. This struc-
ture will be described later on only in a technical notc since the programmer should never use explicitly data
contained in it.

3.4.4 Access notation
‘The access macros are defined in terms of #define declarations that involve a call to

XMMAccess_v_array() or

XMMFast_Access_v_array() that arc the functions that actually retrieve information from eXtended
Memory by using the Virtual Array Control Structure of type XMM_VACS.

XMMPFast_Access v array() is considerably faster than the first function, but can be used only when all the
operations that the uscr wishes to perform on a Virtual Array (for example loaded from a disk file) are of
read only type.

Thesc functions should not be called directly but only used in macros definitions. Let us suppose, as a first
simple example, that we nced to access the array of intcgers BigArray: if it was a standard array it would be
sufficicnt to write a linc like this:

BigArray[item] = 5;

In order to perform the samme operation with a simitar syntax in the case of Virtual Arrays it is nccessary to
define the following macro:

#define BigArray (i) (*(int *)XMMAccess v_array(v array, i))

After the crecation of the Virtual Array any of its element can be accessed with a construct like the following
onc

BigArray(item) = 5;

et us now analyze the macro definition. 'The access functions return a void pointer to the referenced array
element. This pointer must be cast to the desired type, in this case a pointer to integer. Then the actual array
clement is obtaincd by taking the content of this pointer; this notation works well both for read and write
operations?.

n = BigArray(item); /* read access */

BigArray(item) = 5; /* write access */

XMMAccess_v_array() requires, as the first parameter, the pointer 1o the Virtual Array Control Structure of
type XMM_VACS that idenlifics the required Virtual Array. This pointer s set by the call to any of the
creation functions described above, that must be performed before any access to the Virtual Array. The
second parameter is plainly the index number of the searched clement.

4 Pay altention thal write operations arc not permitted when using XMMFast_Access_v_array() because of the partic-
ular way in which eXtended Mcemory is managed.

16 User's Manual

IBM Internal Use Only

What follows is an example of the whole procedure:

#include <stdio.h>
#include agxmm.h

/* Access macro definition *

#define BigArray(i) (*{int *)XMMAccess_v_array(v_array, i))

main()
[
XMM_VACS *v_array; /* Virtual Array Control Structure */
/* pointer declaration */
long arrsize = 50000; /* desired v_array size */

int i=0, n;
..... XMM and PFS initializations

/* creates the virtual array setting element size */
/* the size of item structure and setting the */
/* initialization value to i; */
/* returns pointer to XMM VACS structure v_array */

if((v_array = XMMCreate v_array(“PFneme", arrsize, sizeof(int),
(char *)&i, 8, 0) == NULL)
{

printf("%s\n", XMMErrorMsg(XMMError});
exit(1l);

J

for(i=0; i<arrsize; i++)

{

/* access the i-th element assigning a value to it.... */
BigArray(i) = i;

/* e or retrieving a value from it.... */
n = BigArray(i);
......... other operations

} /* end main() X/

AGXMM Technical Reference

In a more complex case the user may destre to access arrays of structures and fields within them. lle can use

the following example:

#include <stdio.h>
#include agxmm.h

/********k*************i*****************/

/* Array Elements Structure typedef */

/****if*******t**********i*i*************/

typedef struct

{

long v_item, v_qty;

Chapter 3. AGXMM Technical Reference

17

AGXMM Technical Reference [BM Internal Use Only

char v_desc[24];

)

items;

/* Access Macros definitions: single structure.... */
#define XMM_VREC(J) ((items *)XMMAccess_v_array(item_array, i))

/* and various fields in them */
fidefine item(i) XMM_VREC(i)->v_item

#define qty(i) XMM_VREC(i)->v_qty

#define desc(i) XMM_VREC(i)->v_desc

main()

XMM_VACS *item array;
unsigned long i;
items fitlchar;

/* single structure prototype initialization */
fillchar.v_item = -1;

fillchar.v_qty = -1;

strepy(fillchar.v_desc, "Null_array_item ")

..... XMM and PFS ipitializations

..... Virtual Array creation (returns XMM VACS pointer).......

/* fills in 50 array items */

«

for(i=0 ; i<50 ; i+t)

{

item(i) = i+1;

aty(i) =0;

sprintf(desc(i), "item # %1d", i+l);
}

}/* end main{) */

It is also possible to reference multidimensional arrays as shown in the following example:

#include <stdio.h>
#include agxmm.h

/******t*******************t*************/

/* Array Elements Structure typedef */

/*********‘h***************k**************/

typedef struct

{

int rowitem[130];

}

matrix;

18 User's Manual

IBM Internal Use Only AGXMM Technical Reference

/* Access Macros definitions: get whole column.... */
#define XMM_VREC(y) ((matrix *)XMMAccess_v_array(item_array, y))

Y A and corresponding row */
#define mat(x,y) XMM_VREC(y)->rowitem[x]

main()

{

XMM_VACS *item array;
unsigned long i;

..... XMM and PFS initializations

..... Virtual Array creation (returns XMM VACS pointer).......

/* fills in a few elements in the matrix */

for(i=0 ; i<50 ; i++) mat(i,i) = i+1;

} /% end main() */

There are a few things to be noticed about this last example:
1. each row in the matrix is defined as a single element in the Virtual Array item;

2. consequently a row cannot be extended beyond a certain limit whose upper value is 64Kb, the 8086
addressing segment size. "The actual limit is indeed lower, since it depends on the parameters used for
the creation of the Virtual Array.

3.4.5 Closing Virtual Arrays

When the user no longer needs to reference the elements of a Virtual Array he can close it by calling

XMMClose_v_array() This function does not actually discard data contained in the Virtual Array but
rather stores them in the related Pseudo File, whose handle is rcturned, and frees that region in conventional
memory nceded for Virtual Array management.

The programmer has to take care of the use of the data now contained in the Pseudo File: he can, for
example, save them on disk, or discard them by simply closing also the Pseudo File.

3.4.6 Cautions

There are a foew remarks to keep in mind when using Virtual Arrays. Although the access syntax is quite
similar to the standard one, the paging algorithm can generate some collateral effects. Since only a small
number of elements 5 in conventional memory at access time and these elements are loaded using a hashing
scheme

« there is no warranty that logical consecutive elements are placed in consecutive memory locations in the
buffer;

¢ when accessed, different clements with the same hashing key are loaded from eXtended Memory to the
same buffer address.

Chapter 3. AGXMM Technical Reference 19

AGXMM Technical Reference IBM Internal Use Only

These two facts lead to some disappointing consequences. [for example, pointer autoincrementation does
not lead, in gencral, to the next item of the Virtual Array. Morcover, contemporary access to different ele-
ments can cause buffer collision; for example, memory copy functions, such as strepp, used to copy data
directly from onc array element to another, are unreliable because thc two may occupy the same buffer
locations. In particular

strcpy(StringArray(n), StringArray(m));

will not work if 7 and m have the samc hashing keys. Troubles can be avoided by using a temporary string
buffer as follows:

strcpy(temp _string, StringArray(m));
strcpy (StringArray(n), temp_string);

On the other hand, statements like
BigArray(n) = BigArray(m) + 1;

work correctly beecause memory copying s not involved and the compiler calculates the assignment value
before the addresses for the assignment.

‘I'hc choice of using a buffered access also forbids the employement of such things as in-memory sort utilities
like gsort

I'inally, take care not to overrun the end of the array clements when copying data into them since this could
spoil some data management information.

‘I'echnical note 8:

The management of Virtual Arrays has required the implementation of a paging algorithm that transfers areas of eXtended
Memory into convenlional memory whenever this is necessary in order to satisfy user’s requests of referencing an element in a
Virtual Array. Things have becn arranged so that the entire procedure is hidden from the uscr; this is how the main purpose
of handling in a transparent way very large amounts of data under DOS operating system is attained.

FFor the sake of completcness, we will now outline this algorithm, though it is clear that normally one does not have to care
about the operation of memory management.

The algorithm can be thought of as a simple kind of hashing function that associales to any element of a Virtual Array a
location in a bufTer placed ir conventional memory. This buffer, that we call data_buffer and whose dimension bsize can be set
by the user, contains the dala that have to be transferred from eXtended Memory in order to permit Virtuat Array element
access. It is at the basis of the procedure, along with the index_buffer that contains information about the eXtended Memory
areas present In data_buffer; both are allocated by any one of the Virtual Array creation functions that fulfiil also other funda-
mental tasks. Among them, there is the logical operation of dividing the Virtual Array into segments whose size can be chosen
by the user il he seis the proper parameter segsize when calling such a function. The segmentation of a Virtual Arsay has a
correspondence in the logical segmentation of the data_bufTer that of course can contain much less segments.

A segment represents the amount of memory which can be transferred back and forth between eXtended and conventional
memorty whenever it is necessary. fn order to keep track of which segments of the Virtual Array are present in data_bufTer at
any given moment, the index_bufTer is built as a vector ol integers having the following characteristics:

* its dimension is equal to the total number of scgments that can be contained in the data_buffer
* its index identifies the segment number in data_buffer
* each one of ils items contains two kinds of information
1. the segment number in Virtual Array is stored in the first 1S bits
2. the highest bit is cmployed as a flag in order to indicate il any element in that segment has been changed by the user
When a new Virtual Array is created, it is necessary to open the Pseudo File that will contain it, to determine the segmentation

in it and the dimension of data_buffer, to allocate memory for the data_buffer and the index_buffer and Lo initialize
index_bulfer and data_bulYer clements.

20 User's Manual

IBM Internal Use Only AGXMM Technical Reference

Once the the Virtual Array scgmenlation and the dala_bulfer dimension are given, it is possible to outline how the hashing
transformation works in order o assign a localion in conventional memory to the n-th element of the Virtual Array. All we
have to do is to compute the fallowing quantities:

* to which segmenl v_seg of the Virtual Array its n-th element belongs;
* which will be the offsct of the element in data_bufTer, in terms of element size units;
* once Lhe offset is known, which will be the segment d_seg in data_buffer into which the n-th element will fall.

‘'he second parameter gives the new location of the n-th element in conventional memory, while the first and the last one
idenlify which are the segments thal have to be swapped.

An example may better explain how these values are evaluated. Let us consider the array element elind of size elsize: its
segment in the Virtual Array is computed by the following expression

v_seg = (int){elind / segsize);
while its offset in the data_buffer, which is just the hashing key, is given by
b_off = (int)(elind % ((bsize/(elsize*segsize))*segsize));

where ali the operations have (o be taken in the order given by parentheses, paying attention to the fact that only integer
operations are involved, and the division could cause rounding elfects. Finally, the segment number in data_buffer is calculated
as follows

bseg_off = h_off / segsize;

Il the n-th clement is referenced by the user, and if its segment is not already present in data_bufTer, v_seg will be placed at
d_seg in conventional memory and the corresponding itern of the index_buffer will be updated.

The previous content of the segment d_seg in data_buffer can be possibly stored back in eXtended Memory. but only if some
of its elements have been changed by the user. This condition is actually controlled by the function XMMAccess_v_array() but
not by XMMFast_Access_v_array(), which are the funclions that implement the memory management and allow Virtual Array
elements reference; furthermore, when closing a Virtual Array, XMMClose_v_array() checks which are the data_buffer seg-
ments that are (o be saved in eXtended Memory. All these functions inspect the status bit of index_buffer items which is risen
whenever an element in the corresponding data_bufTer segment has been changed. The mechanism used to set this status bit
works as follows: each time an array element is accessed, a copy of it is stored in a safe place; at the next access to an array
element (the same as before or any other one), a2 comparison is performed belween the copy and the current value of the last
accessed element; if they are nol equal, this means that a write operation has occurred on that array item and the corre-
sponding segment status bit must be risen. This test is done one access request later than the reference operation that modified
the element, because clement processing is done on return of the XMMAccess_v_array() and it is impossible to know in
advance if the program will perform a write or read only access. The only other way would be to save always any accessed
segment each time il must be swapped out of buffer withoul worrying about modificalions, but this would decrease sensibly the
access speed performances.

All the information needed Lo manage memory swapping in this way is contained in a Virtual Array Control Structure, whose
type is defined as XMM_VACS, which is allocated and properly initialized by any one of the Virtual Array creation functions,
such as XMMCreate_v_array(). The related typedel declaration is as follows:

typedef struct /* XMM virtual array control structure */
int PFile_Handle; /* PseudoFile handle */
unsigned Jong elnun; /* # of array elements in file */
int elsize; /* ¥ of hytes per element */
int *index_buffer; /* table of data address */
char *data_buffer; /* tahle of data */
int dbuf_size; /* # of elements in buffer */
int dseg_size; /* # of segments in buffer */
int lastbel; /* last accessed element buffer # */
char *lastel; /* Pointer to Internal copy of last */

/* accessed edement */
unsignhed Tong bsize; /* tax Data Buffer S{ze in byte */
unsigned long segsize; /* # of elements per segment */
XHM_VACS ;

The meaning of each parameter appearing in this definition is summarized in the following list:
PFile_llandle it is the handle of the Pseudo-File Lhat contain the Virtual Array;

elnum it specifics the total number of elements in the Virtual Array;

elsize it is the size, in bytes, ol each.clement of the Virtual Array;

Chapter 3. AGXMM Technical Reference 21

AGXMM Technical Reference IBM Internal Use Only

index_buffer it is the address of the buffer that contains the information about the Virtual Array segments that are
placed in conventional memory at any tlime;

data_buffer it is the address of the conventional memory buffer that contains Virtual Array data;

dbuf_size it is the total number of elements that can be stored in the data_bufTer; it is used in order to compute
which would be the offset of a Virtual Array element in the data_buffer;

dseg_size it is the total number of segments that can be stored in the data_buffer;

lasthel it is the position in the data_bufTer (expressed as an offsct) of the Jast accessed element;

lastel it is the pointer to the internal copy of the last accessed clement; it is used to test if that element has been
changed, and hence to see if it is necessary to rise the status bit.

bsize it is the maximum size of the data_buffer in bytes;

segsize it is the number of Virtual Array elements that can be stored in each segment; it is used to compute to

which segment in data_buffer a Virtual Array element will belong.

As it has been already stressed, the normal use of this structure does nol embrace the direct access to these information, since
otherwise the transparency ol Virtual Array elements referencing would be last. What is needed is just to store the pointer to
the XMM_VACS structure, which is returned by creation functions, and to pass it as a parameter to the access functions when
defining the access macros. Refer to the exampie in order Lo see how Lhis is done.

3.4.7 Error management for Virtual Arrays

The error management is consistent with that of previous layers, whenever this is possible: the global vari-
able XMMFError is set by every function and can be read to test error conditions. However, there are situ-
ations in which this is not profitable; in particular, during Virtual Array elements access it is not possible to
test XMM Error without loosing the appcarance of using standard arrays. To cope with this difficulty, the
user can define his own error management function that takes care of communicating error conditions and
messages. The global variable

void (*XMM_Varr_error)(int ErrCodc) is set to NULI, by default: this means no error communi-
cation. ‘The user can change the value of this pointer by assigning to it the address of his own error func-
tion; at any time an crror occurs while accessing Virtual Arrays, the system will call this function passing to
it, as a parameter, the corresponding error code stored in XMMError. This error code will be processed as
needed, possibly obtaining from the system the corresponding crror message string by means of a call to
XMMEirrorMsg(XMMEirror).

What follows is a simple cxample of this procedure.

#include <stdio.h>
#include agxmm.h

main ()

{

/* setting pointer to error function */
XMM Varr_error = MyErrorfunc;

if(XMMAccess() != 0)
printf(“Unabie to access XMS\n");

exit(1);

}
if(XMM_files_init() !'= NOERROR)
printf("Unable to access XMS PseudoFiles\n");

exit(1};
}

22 User's Manual

IBM Internal Use Only AGXMM Technical Reference

} /* end main */

void MyErrorfunc(int ErrCode)
printf(*%s\n", XMMErrorMsg(ErrCode))};

exit(1);
}

Chapter 3. AGXMM Technical Reference 23

AGXMM Technical Reference IBM Internal Use Only

24 User's Manual

IBM Internal Use Only

AGXMM Function Reference

Chapter 4. AGXMM Function Reference

41 XMM_files_init

Name:

XMM files_init - Initializes the Pscudo File System

Declaration:

int XMM_files init(void };

Synopsis:

#include "agxmm.h"
int EC;
EC = XMM_files init();

Pescription:

The function scts all the handles of the Pseudo [iile System to UNUSIED; in this way it makes them
available. This function can be called only once in a single program. It also sets XMMError.

Return value:

The function returns the error code stored in XMMError.

Example:

#include "agxmm.h"

/* Init pseudofiles manager */

if(XMM_files init() '= NOERROR)
printf(XMMErrorMsg(XMMError));

exit(1);

—————— Pseudo Files Operations -----

Related Functions:

Chapter 4. AGXMM Function Reference

25

AGXMM Function Reference IBM Internal Use Only

4.2 XMMAccess

Name.

XMMAccess - Initializes and accesses eXtended Memory Manager

Declaration:

int XMMAccess({void)

Synopsis:

#irclude "agxmm.h"
int RetCode;

RetCode = XMMAccess();

Description:

The function checks if the hardware and the XMM are properly sct up and also prepares the system to
access eXtended Memory. In case of error, the global variable XMMError is set to the error code value.

Return value:

The function rcturns the crror code value stored in XMMIError (NOERROR if everything is OK).

Example:

The following cxample shows a typical call to XMMAccess() before accessing any other XMM function

#include "agxmm, h"
if((XMMAccess ()} != NOERROR)
printf("Unable to Access XMS\n");

exit(1);
)

Related Functions:

XMMlnstalled()

26 Uscr's Manual

IBM Internal Use Only AGXMM Function Reference

4.3 XMMAccess_v_array

Name:

XMMAccess_v_array - Accesses a Virtual Array element

Declaration:

void *XMMAccess_v_array(XMM_VACS *vacs, unsigned long elind)

Synopsis:

#include "agxmm.h"

unsigned long elind; /* index of referenced element */
XMM_VACS vacs; /* Virtual Array control structure */
<desired type> content; /* store the referenced element */

content = (<desired type> *)XMMAccess v _array(&vacs, elind);

Description:

This function is to be used in the declaration of the macros that are used to emulate standard array
access. The function accesses a Virtual Array element implementing a paging algorithm that manages
the swapping of memory areas between conventional and eXtended Memory. First of all, the function
checks if the last accessed element has been changed or not; if yes, it rises the status bit of the corre-
sponding Jogical segment in the conventional memory buffer allocated by XMMCreate_v_array(). Then,
it performs a test to verify if the referenced element is already loaded in the buffer. In doing this opera-
tion, XMMAccess_v_array() uses the information stored in the Virtual Array Control Structure of type
XMM_VACS. If the clement is not placed in any segment, the function looks for it in the Virtual Array,
identifies its segment and transfers it entirely in the buffer. In this way a segment already in the buffer is
replaced after checking its status bit: if it is high, the segment is copied back in eXtended Memory before
replacement. The user must take care of refcrencing an element that does not exceed the maximum
number of elements in the Virtual Array, declared when calling the function XMMCreate_v_array().

Return value:

The function returns NUILL, on crror; the address in the buffer of the accessed element otherwise. The
function sets XMMlirror.

Example:

We repost here the simple case of a Virtual Array of integers. Refer to chapter 2 for more complex
examples.

#include <stdio.h>
#include agxmm.h

/* Access macro definition */
#define BigArray(i) (*{int *)XMMAccess_v_array(v_array, i))

main()

XMM_VACS *v_array;

Chapter 4. AGXMM Function Reference 27

AGXMM Function Reference

int i=0;

..... XMM an¢ PFS initializations

..... Virtual Array creation (returns v_array pointer)......
/* access the i-th element assigning a value to it.... */

BigArray(5) = i;

/e or retrieving a value from it.... */
i = BigArray(5)

} /* end main() */

Related Functions.:

XMMTFiast Access_v_array()

28 User's Manual

IBM Internal Use Only

IBM Internal Use Only AGXMM Function Reference

4.4 XMMAlloc

Name:

XMMAlloc - Allocates XMM memory, rounding up to Kbyte

Declaration:

int XMMAYToc(unsigned long sizebytes);

Synopsis:

#include "agxmm.h"

unsigned long size; /* number of bytes to be allocated */
int handle; /* XMM handle number */

handle = XMMA1Toc(size);

Description:

T'he function allocates an EXtended Memory Block (EMB). The eXtended Memory Manager reserves
memory in multiples of Kbytes, so the function rounds up to the lower number of Kbytes necessary to
store the requested number of bytes. The prototype requires the size in bytes to be functionally equiv-
alent to malloc(). The number of blocks that can be allocated depends on your XMM: for example,
HIMEM.SYS gives by default 32 different handles, but this parameter can be varied.

Return value:

‘The function returns the EMB handle number or 0 on error. The function sets XMMError.

Example:

The following example shows how to allocate a 3Kb I:MB, how to get the corresponding handle and
how to manage an error condition:

#include “agxmm.h"

int Handle;
unsigned long size = 1024*3;

if((Handle = XMMATloc(size)) == 0)
printf({ "%s\n", XMMErrorMsg(XMMError));

exit(1);
}

Related Functions:

XMMReAloc(), XMMFrec()

Chapter 4. AGXMM Function Reference 29

AGXMM Function Reference IBM Internal Use Only

4.5 XMMClose

Name:

XMMClose - Closes a Pseudo-Tile, releasing the related eXtended Memory to the system.

Declaration:

int XMMClose(int Pseudo_File Handle);

Synopsis:

#include "agxmm.h"

int handle; /* XMM handle number */
int EC; ‘

EC = XMMClose(handle);

Description:

The function closes a previously opened Pseudo-File, by freeing the EMB that contained it and by
setting its handle to UNUSED. Uscr should take care of saving of data stored in the Pseudo-File before
closing it, since otherwisc they arc completely lost. The function sets X MMError.

Return value:

The function returns the error code stored in X MMError.
FExample:

#include "agxmm.h”

int PFile_Hand = 0;

char *fname = "Prova“;

---------- PSEUDO FILE SYSTEM INITIALIZATION R T L

/* Opens a pseudofile */

if{ (PFile_Hand = XMMOpen(fname, 0, 2048)) == -1)
{

printf(XMMErrorMsg(XMMError));

exit(1);

J

---------- READ/WRITE OPERATIONS ~— =----e--no-

/* Closes the pseudo file after use */

if(XMMClose(PFile_Hand) '= 0)

30 User's Manual

IBM Internal Use Only AGXMM Function Reference

{

printf{ XMMErrorMsg(XMMError));
exit(1);

J

Related Functions:

XMMOpen()

Chapter 4. AGXMM Function Reference 31

AGXMM Function Reference IBM Internal Use Only

4.6 XMMClose_v_array

Name:

XMMClose_v_array - Closes a Virtual Array storing data in its Pseudo File

Declaration:

int XMMClose v_array({ XMM_VACS *vacs);

Synopsis:

#include "agxmm.h"

XMM_VACS vacs; /* Virtua) Array control structure */
int PF_handle; /* store the referenced element */

PF_handle = XMMClose_v_array(&vacs);

Description:

The function performs the following operation. First it checks if the last accessed element has been
changed, finds which scgments have been modified and store them in the Pseudo File that contained the
Virtual Array. Then it frees the conventional memory buffers and the Virtual Array control structure.
The function returns the Pscudo TFile handle, so that the user has to take care of its closure, possibly
after some other operations on it.

Return value:

The function returns -1 on error; a Pscudo File handle otherwise. The functton sets XMMEryor.

Example:

#include "agxmm.h"

XMM_VACS vacs; /* Virtual Array control structure */
int PF_handle; /* store the referenced element */

..... Virtual Array initialization and creation

....... Virtual Array operations

/* closes virtual array */

if((PFile_Handle = XMMClose v_array(item array)) == -1)

{
printf(“%s\n", XMMErrorMsg{ XMMError));

exit(1);

)

Related Functions:

XMMCreate_v_array(), XMMInit_v_array(), XMMIl .oad_v_array()

32 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.7 XMMCopy

Name:

XMMCopy - Copics memory arcas from eXtended to conventional memory in any possible way

Declaration:

int XMMCopy(XMMCOPYBLOCK *areainfos);

Synopsis:

#include "agxmm.h"

XMMCOPYBLOCK areainfos; /* memory areas control structure */
int RetCode; /* Return value */

RetCode = XMMCopy(&areainfos);

Description:

The function copies an arca between cXtended Memory and conventional memory in any possible way
depending on the values of the control structure parameters. The structure XMMCOPYBLOCK is
described in detail in the ‘Technical Reference chapter.

Return value:

The function retums the Iircor Code and sets X MMFError.

Example:

The following cxample shows how to copy a string of characters from conventional to eXtended
Memory 8 bytes after the beginning of the chosen EMB

#include "agxmm,h"

char string[] = "string to be copied";
XMMCOPYBLOCK test;

int Handle;

—————————— XMM Initialization and Memory Allocation

/*** Copy from conventional memory to XMM ***/

test.bsize = strlen(string)+l; /* compute block size */
test.src_Handle = 0; /* source is in conventional mem. */
test.src off.address = string; /* source address in conv. mem. */
test.dest Handle = Handle; /* dest. Handle- from XMMATloc() */
test.dest off.offset = 81; /* EMB offset from its beginning */
if(XMMCopy(&test) !'= NOERROR) /* XMMCopy() call and */
/* Error Management */
printf(XMMErrorMsg(XMMError)); /* XMMCopy() sets XMMError */
exit(1); :

)

Chapter 4. AGXMM Function Reference 33

AGXMM Function Reference IBM Internal Use Only

/* OK message if successful */
printf(" '%s' copied from conv mem to XMM\n",stringa);

Related Functions:

34 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.8 XMMcoreleft

Name:

XMMcoreleft - Calculates how many bytes of free eXtended Memory remain on your PC

Declaration:

unsigned long XMMcoreleft(void);

Synopsis:

#inciude "agxmm.h"
unsigned long Freemem;

Freemem = XMMcoreleft();

Description:

The function calculates the number of available bytes in eXtended Memory. XMM allows to fragment
and allocatc memory any time that is needed; the number rctumed by this function refers to all unused
eXtended Memory. If memory has been fragmented by previous XMMAlloc(), XMMReAlloc() and
XMMFree(), usually it is not truc that a unique EMB of that size can be allocated. The maximum
allowable single block size is given by the related function XMMmaxblock().

Return value:

The function returns the size of unused eXtended Memory or 0 if an error occurs or if there is no more
memory. XMMIirror is sct.

Example:

The following example shows how to get information about eXtended Memory left for use:

#include "agxmm.h"

unsigned iong memsize;

if((memsize =XMMcoreleft()) == 0)
{

printf{ "%s\n", XMMErrorMsg(XMMError}); /* Error management */
exit(1);

printf{"Found %lu XMM bytes unused\n", memsize);

Related Functions:

XMMmaxblock()

Chapter 4. AGXMM TFunction Reference 35

AGXMM Function Reference IBM Internaf Yse Only

4.9 XMMCreate v array

Name:

XMMCreate v_array - Creates a Virtual Array and makes it available for use

Declaration:

XMM_VACS *XMMCreate_v_array(char *PFname, unsigned long elnum,
int elsize, char *filch, unsigned long bsize, unsigned long segsize)

Synopsis:

#inciude "agxmm.h"

char PFname[12] /* name of the Pseudo File containing */

/* the Virtual Array */
unsigned long elnum; /* number of elements in Virtual Array */
int elsize; /* size of elements in bytes */
char filch[16] /* filling character for empty V.Array */
unsigned long bsize; /* conv. mem. buffer size in bytes */

/* takes default value if zero */
unsigned long segsize; /* number of elements per segment */

/* takes default value if zero */
XMM VACS *vacs; /* Virtual Array Control Structure */

vacs = XMMCreate v_array(Pfname, elnum, etsize, filch, bsize, segsize);

Description:

The function creates a Virtual Array by opening the Pseudo File that will contain it and allocating the
Virtual Array Control Structure, the buffers for data and their addresses and initializing all the elements
to the predefined mask filch. 'The name of the Pseudo File is used to open it, while elnum and clsize are
nceded to compute its size. ‘The uscr can change the parameters that controls the buffer and segment
sizes, bsize and segsize, in order to improve Virtual Array access performance; setting to zero these vari-
ables will causc the system to take default valucs, bsize = 10240 b and scgsize = 48 elements. The
pointer to the Virtual Array Control Structure is returned after allocating space for it.

Return value:

The function returns NULI, on error; the pointer to the Virtual Array Control Structure otherwise.

Lxample:

#include <stdio.h>
#include <stdlib,h>

#include "agxmm.h"

/********************************/

/* Access Macros */
/********************************/

36 User's Manual

1BM Internal Use Only AGXMM Function Reference

#define XMM_VREC(i) ((items *)XMMAccess v_array(item array, 1))

#define item(i) XMM_VREC(i)->v_item
#define qty(i) XMM_VREC(1)->v_qty
#define desc(i) XMM_VREC(i)->v_desc

/*i*i*********************k**************/

/* Array Elements Structure typedef x/

/*ﬁt**************ﬁ**i***l****ki*t***i*t*/

typedef struct
{
long v_item, v_qty;
char v_desc[24];
}

items;
main{)

XMM_VACS *item_array;

unsigned long i

int PFile_Handle;

unsigned long arrsize, bsize, segsize;
items fillchar;

fillchar.v_item = -1;
fillchar.v_gty = -1;
strcpy(fillchar.v_desc, "Null array_item "3

XMM_Varr_error = MyErrorFunc;
if{ XMMAccess() !=)

printf("Unable to access XMS\n");
exit(1);
)

P f(XMM_files init() != NOERROR)

printf("Unable to access XMS PseudoFiles\n");
exit(1);
)

/* create a virtual array setting element size */
/* the size of item structure and setting the */
/* initialization char to space char */

if((item array = XtMCreate v_array("Prova", arrsize, sizeof(items),
(char *)&fillchar, bsize, segsize)) == NULL)
{

printf{ "%s\n", XMMErrorMsg(XMMError));
exit(1);

..... Virtual Array operation

Related Functions:

Chapter 4. AGXMM Function Reference 37

AGXMM Function Reference IBM Internal Use Only

XMMinit_v_array(), XMMI.0oad_v_array()

38 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.10 XMMErrorMsg

Name:

XMMErrorMsg - Returns the pointer to the proper error message

Declaration:

char *XMMErrorMsg(int ErrorCode);

Synopsis:

#include "agxmm.h"

char *string; /* stores pointer to error message */
int EC; /* Error Code value */

string = XMMErrorMsg(EC);

Description:

The function rcturns the pointer to the error message identified by its argument, At the moment, error
messages are available only in ¢nglish language.

Return value:

The function returns the pointer to the error messsage.

Example:

Refer to the examples for XMMCopy() or XMMcoreleft() that also show simple uses of
XMMEirrorMsg().

Relared Functions:

Chapter 4. AGXMM Function Reference 39

AGXMM Function Reference ‘ IBM Internal Use Only

411 XMMFast_Access_v_array

Name:

XMMTFast Access_v_array - Accesses a Virtual Array element without checking previous data modifica-
tions

Declaration:

void *XMMFast_Access_v array(XMM_VACS *vacs, unsigned long elind)

Synopsis:

#include "agxmm.h"

unsigned long elind; /* index of referenced element */
XMM_VACS vacs; /* Virtual Array control structure */
<desired type> content; /* store the referenced element */

content = (<desired type> *)XMMFast Access v_array(&vacs, elind);

Description:

This function is to be uscd in the declaration of the macros that are employed to emulate standard array
access. It has the same syntax of XMMAccess_v_array(), but operates with higher speed.

The function does not perform any check on the possible modification of the data loaded in the buffer,
so that the scgment swapping takes place without saving the segment that has to be replaced. This
function can be used if no data modification is necded, for example when reading data or displaying
images. A further speed improvement is obtained via direct call to Basic Layer functions. These are the
only differences between this and XMMAccess_v_array() function. Refer to the documentation on that
for more information.

Return value:

The function returns NULI, on error; the address in the buffer of the accessed element otherwise. The
function sets XMMTIirror.

Ixample:

We report here the simple case of a Virtual Array of integers. Refer to chapter 2 for more complex
examples.

#include <stdio.h>
#include agxmm.h

/* Access macro definition */
#define BigArray(i) (*(int *)XMMFast Access_v_array{v_array, i))

main()

XMM_VACS *v_array;
int i=0;

..... XMM and PFS initializations

40 User's Manual

IBM Internal Use Only A'GXMM Function Reference

..... Virtual Array creation (returns v_array pointer).......

/* access the i-th element assigning a value to it.... */
BigArray(5) = i;

YA or retrieving a value from it.... */
i = BigArray(5)

} /* end main() */

Related Functions:

XMMAccess_ v array()

Chapter 4. AGXMM Function Reference 41

AGXMM Function Reference IBM Internal Use Onty

412 XMMFree

Name.

XMMTIree - Releases previously allocated XMM memory

Declaration:

int XMMFree(int Handle };

Synopsis:

#include "agxmm.h"

int Handle; /* XMM handle nrumber */
int EC; /* stores XMMError value */

EC = XMMFree(Handle };

Description:

The function freces an FXtended Memory Block (EMB) previously allocated by XMMAlloc(), which
also returned the handle identifier.

Return value:

The function returns the value of XMMError after setting it.

Lxample:

The Synopsts paragraph reports the simplest call to XMMTIree()

Related Functions:

XMMATlloc(), XMMRcAlloc()

42 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.13 XMMHandielnfo

Name:

XMMIlandlelnfo - Gets EMB handles information

Declaration:
int XMMHandleInfo(int Handle, unsigned long *blocksize, int *freehnd,
int *lockmode)

Synopsis:

#include "agxmm.h"

int Handle; /* Handle whose infos are needed */
unsigned long blocksize; /* EMB size in bytes */
int freehnd; /* # of remaining free handles */
int lockmede; /* # of locks (0 = not Tocked) */
int EC;

EC = XMMHandlelnfo(Handle, &blocksize, &freehnd, &lockmode);

Description:

The function returns in the parameter passed variables the information about the requested EMB
handle, previously allocated by a call to XMMAlloc(). “blocksize” is the size of the EMB; “freehnd” is
the number of memory blocks you can still allocate; “lockmode” is the lock count associated to the
[IMB: this should be 0 for each practical purpose.

Return value.:

‘I'he function returns the error code stored in XMMError.

Example:

#include "agxmm.h"

int Handle;

unsigned long blksize;
int freehnd;

int lockmode;

/* Allocates 3Kb Extended Memory Block */
if((Handle = XMMA)loc(1024%3)) == 0)

printf("%s\n", XMMErrorMsg(XMMError));
exit(1);
) .
/* Get information about allocated EMB */
if(XMMHandleInfo(Handle, &blksize, &freehnd, &lockmode) != NOERROR)

{

printf("%s\n", XMMErrorMsg(XMMError));
exit(1);

)

Chapter 4. AGXMM Function Reference 43

AGXMM Function Reference IBM Internal Use Onty

printf("You can still allocate %d EMB\n",freehnd);

printf("Size of EMB %d is %1d bytes \n", Handle, blksize);

Related Functions:

XMMAlloc()

44 User's Manual

IBM Internal Use Only AGXMM Function Reference

414 XMMInit_v_array

Name:

XMMInit_v_array - Creates a Virtual Array and makes it available for use with data contained in an
existing Pseudo File

Declaration:

XMM_VACS *XMMInit v_array(int PF_hnd, unsigned long elnum,
int elsize, unsigned long bsize, unsigned long segsize)

Synopsis:

#include “agxmm.h"

int PF_hnd; /* handle of Pseudo File containing */
/* data for the Virtual Array */
unsigned long elnum; /* number of elements in Virtual Array */
int elsize; /* size of elements in bytes */
unsigned long bsize; /* conv. mem. buffer size in bytes */
/* takes default value if zero */
unsigned long segsize; /* number of elements per segment */
/* takes default value if zero */
XMM_VACS *vacs; /* Virtual Array Control Structure */

vacs = XMMInit v_array(PF_hnd, elnum, elsize, bsize, segsize);

Description:

The function takes a previously opened Pseudo Tiile handle to use 1t as a Virtual Array. It allocates the
Virtual Array Control Structure and the buflers {or data and their addresses. The data must have been
initialized on the Pscudo lile just as if they were array elements, i.e. consecutive elements must be in
scquence in the Pseudo File with the expected size for array elements. The user must take care that the
Pseudo File size is equal or greater than the memory needed to store the declared number of elements.
The user can change the parameters that control the buffer and segment sizes, bsize and segsize, in order
to improve Virtual Array access performance; setting to 7ero these variables will cause the system to take
default values, bsize = 10240 b and segsize = 48 clements. The pointer to the Virtual Array Control
Structure is returned after allocating space for it.

Return value:

The function returns NULIL, on error; the pointer to the Virtual Array Control Structure otherwise.

Example:

#include <stdio.h>
#include <stdlib.h>

#include "agxmm.h®

Chapter 4. AGXMM Function Reference 45

AGXMM Function Reference IBM Internal Use Only

/***i***********************h****/

/* Access Macros */
/******************i*************/

#define element (i) (*(int *)XMMAccess_v_array(item array, 1))

main()

(

XMM_VACS *item_array;
int elem[1024];

int PFite_Hand;

...... XMM and PFS initializations

/* Opens a pseudofile */

if{ (PFile_Hand = XMMOpen("PFname", 0, 2048)) == -1)
printf(XMMErrorMsg(XMMError));
exit(1);

..... Pseudc File operations RN
/* take the Pseudo File and use it as a Virtual Array */
if((item_array = XMMInit_v_array("Prova", arrsize, sizeof(int), 0, 0))
== NULL)

printf("%s\n", XMMErrorMsg{ XMMError));
exit(1);

..... Virtual Array operations such as

element (10) = elem[10];

Related Functions:

XMMCreate_v_array(), XMM].pad_v_array()

46 User's Manual

IBM Internal Use Only

4.15 XMMinstalled

Name:

XMMinstalled - Checks f XMM 1s installed

Declaration:

int XMMInstalled(void)j

Synopsis:

#include “agxmm.h"
int RetCode;

RetCode = XMMInstalled();

Description:

AGXMM Function Reference

The function tests the furcscnce of an eXtended Memory Manager by generating the interrupt 0x2f with
value 0x4300 in register, AX. ‘The interrupt handler returns the valuc 0x80 in AL register if a XMM is
active. This function is calted by cach AGXMM function before any attempt to use eXtended Memoty.

Return value:

‘The function returns G {f no XMM is active, | otherwise.

Example:

vaoid User XMM function()
{

/* First tests if XMM is installed */
if (IXMMInstalled())

XMMError = NOTEINSTALLED;

return(0);

User XMM_function

} /* end User XMM_ function() */

Related Functions:

body

Chapter 4. AGXMM Function Reference

47

AGXMM Function Reference IBM Internal Use Only

4.16 XMMLoad_v_array

Name:

XMMlLoad_v_array - l.oads a file from disk to eXtended Memory and makes it available as a Virtuat
Array

Declaration:
XMM_VACS *XMMLoad_v_array(char *fname, unsigned long elnum,
int elsize, unsigned long bsize, unsigned long segsize)

Synopsis:

#include "agxmm.h"

char *fname; /* name of the disk file to be loaded */
unsigned long elnum; /* number of elements in Virtual Array */
int eisize; /* size of elements in bytes */
unsigned long bsize; /* conv. mem. buffer size in bytes */

/* takes default value if zero */
unsigned long segsize; /* rumber of elements per segment */

/* takes default value if zero */
XMM_VACS *vacs; /* Virtual Array Control Structure */

vacs = XMMLoad v_array(fname, elnum, elsize, bsize, segsize);

Description:

The function creates a Pseudo File loading data from a disk file, and then makes it available as a Virtual
Array. Tt allocates the Virtual Array Control Structure and the buffers for data and their addresses. The
data must have been stored on the disk file just as if they were array elements, i.e. consecutive elements
must be in sequence with the cxpected size for array elements. 'The user must take care that the size of
the Virtual Array is equal to that of the disk file. The user can change the parameters that control the
buffer and segment sizes, bsize and segsize, in order to improve Virtual Array access performance; setting
to zero these variables will causc the system to take default values, bsize = 10240 b and segsize = 48
elements. The pointer to the Virtual Array Control Structure is returned after allocating space for it.

Return value:

The function rctums NUILTL, on error; the pointer to the Virtual Array Control Structure otherwise.

Lxample:

#include <stdio.h>
#include <stdlib.h>

#include “"agxmm.h"

/********************************/

/* Access Macros */
/**************i**********k*k****/

48 Uscr's Manual

IBM Internal Use Only AGXMM Function Reference

#define element (i) (*(int *)XMMAccess _v_array(item array, i))

main()

XMM_VACS *item_array;

int elem[1024];

unsigned long arrsize = 1024;

...... XMM and PFS initializations
/* take the disk file and load it as a Virtual Array */
if((item_array = XMMLoad v_array("fname", arrsize, sizeof{int), 0, 0))

== NULL)
{

printf{ “%s\n", XMMErrorMsg(XMMError));
exit(1);

..... Virtual Array operations such as

element (10) = elem{10];

Related Functions:

XMMCreate v_array(), XMMInit_v_array()

Chapler 4. AGXMM Function Reference 49

AGXMM Function Reference IBM Internal Use Only

417 MapError

Name:

MapFrror - Internally used, calculates values for XMMUEirror variable

Declaration:

static int MapError(int XMMErr);

Synopsis:

#include "agxmm.h"

extern int XMMError;
int ECy

XMMError = MapError(EC);

Description:

The function is static into AGXMM.C module and is not accessible out of it. It is used by some func-
tions to calculate the proper error code to be stored in XMMLEirror global variable.

Return value:

The functton returns the error code to be stored in XMMError.
Example:

Related Functions:

S0 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.18 XMMmaxblock

Name:
XMMmasxblock - Calculates the size in bytes of the biggest free single EMB

Declaration:

unsigned Tong XMMmaxblock(void);

Synopsis:

#include "agxmm.h"

unsigned long size; /* size of biggest singie EMB */
size = XMMmaxblock();

Description:
The function computces the size of the biggest single EMB which is still free at the moment of the call.
The size is expressed in bytes.

Return value:

The function returns the size in bytes. A zero value indicates an error or the fact that there 1s no more
available memory. The function sets XMMFError.

Example.

#include "agxmm.h"

unsigned long size;

if({size =XMMmaxblock()) == 0)
{printf("%s\n”, XMMErrorMsg(XMMError)); /* Error management */
exit(1);

printf("Found %lu bytes for max. free EMB \n", size);

Related Functions:

XMMcoreleft()

Chapter 4. AGXMM Function Reference 31

AGXMM Function Reference IBM Internal Use Onty

419 XMMOpen

Name:

XMMOpen - Opens a Pscudo Tile, allocating an EMB of the desired size and setting properly its
control structure XMMBLOCK

Declaration:

int XMMOpen(char *name, irt flags, unsigned long size);

Synopsis:

#include "agxmm.h"

unsigred long size; /* maximum allowed size in byte */
int PF_handle; /* Pseudo File handle */
int flag; /* mode flag */

PF_handle = XMMOpen("Pseudo_name", flag, size);

Description:

This function opens a I’seudo Tiile, once PI'S has been initialized. 'The maximum allowed size must be
passed as a paramcter in order to allocate only once all the needed eXtended Memory and avoid possible
troubles with XMMs that do not support XMMReAlloc() function. XMMOpen() checks if there are
available handles in PI'S; if yes, it allocates the requested amount of eXtended Memory and sets all the
parameters in the proper XMMBI.OCK control structure. XMMError is also set.

Return value:

The function returns -1 on error, or the handle identifier of the Pseudo Tile otherwise.
Example:

#include "agxmm.h"

int PFile_Hand = 0;

char *fname = "Prova";

---------- PSEUDO FILE SYSTEM INITIALIZATION ERREE LR

/* Opens a pseudofile */

if((PFile_Hand = XMMOpen(fname, 0, 2048)) == -1)
printf(XMMErrorMsg(XMMError));
exit(1);

}

---------- READ/WRITE OPERATIONS — mr=mm--mm-

82 User's Manual

IBM Jndernal Use Only AGXMM Function Reference

/* Closes the pseudo fite after use */

if(XMMClose(PFile Hand) 1= 0)

(
printf(XMMErrorMsg(XMMError));

exit(1);
)

Related Functions:

XMMClose()

Chapter 4. AGXMM Function Reference 53

AGXMM Function Reference

4.20 XMMRead

Narme:

XMMRead - Reads from a Pscudo File

Declaration:

int XMMRead(int PFile_Handle, char *buf, unsigned int len);

Synopsis:

#include "agxmm.h"

unsigned int Ter; /* number of bytes to be read */
int PF_handle; /* Pseudp File handle */
char buf[65530]; /* buffer in conv. memory *x/

int reading; /* collect # of bytes read */

reading = XMMRead(PF_handle, buf, len);

Description:

IBM Internal Use Only

The function reads from a Pscudo File len bytes and puts them in a buffer allocated in conventional
memory. It starts reading from the current position in the Pseudo Iiile; such position can be changed
using the function XMMSeck(). XMMRead() adjusts the paramcter fen if it exceeds the total real size of
the Pseudo File, in such a way as to read from the current position up to the true end of it. The func-
tion updates the current position pointer in the Pseudo File and also scts XMM£Error. Pay attention to
the fact that the maximum allowed value for the paramcter len is 64Kb due to the well known DQS

segmentation limit.

Return value:

The function returns -1 on crror, (t upon reaching the true end of the Pseudo File and the number of

bytes read otherwisc.
Example:
#include “agxmm.h®

int PFile_Hand = 0;
char buffer[65530];

—————————— PSEUDO FILE SYSTEM INITIALIZATION

-- Open a Pseudo File --
-- Write operations --
if(XMMRead (PFile Hand, buffer, 65530) ==
printf(XMMErrorMsg(XMMError)};

exit(1);

}

54 User's Manual

1BM Internal Use Only AGXMM Function Reference

-- Close Pseudo File --

Related Functions:
XMMWrite(), XMMTell(), XMMSeek()

Chapter 4. AGXMM Function Reference 55

AGXMM Function Reference

4.21 XMMReAlloc

Name:

XMMReAlloc - Resizes an allocated EMB, rounded up to Kbyte

Declaration:

int XMMReAlloc(in Handle, unsigned long sizebytes);

Synopsis:

#include "agxmm.h"

unsigred long size; /* new size of EMB x/
int handle; /* XMM handle number */
int EC;

EC = XMMReAlloc(handle, size);

Description:

IBM Internal Use Only

The function resizes a previously allocated Fxtended Memory Block. As in the case of XMMAlloc(),
the new dimension is rounded up to Kb. I necessary, XMM varies the position of the EMB in order to
resize it. This function is surcly implemented by the device driver TIIMEM.SYS, but other drivers may

not provide it.

Return value:

The function returns the error code stored in XMMTirror.

Example:

#include "agxmm.h"

int Handle;

unsigned long blksize;
int freehnd;

int tockmode;

/* Allocates 3Kb Extended Memory Block */
if((Handle = XMMAlloc(1924*3)) == 6)

printf("%s\n", XMMErrorMsg(XMMError)};
exit(1);

}

/* resize previously allocated EMB */
if(XMMReAlloc (Handle,1024*5) 1= NOERROR)

/* Not all XMM support this function (e.g. QEMM 5.0 does not) */
if(XMMError == UNKFUNCTION)

{
printf("ATTENTION: This XMM does not support EMB reallocation!\n");

}

else

56 User's Manual

IBM Internal Use Only

{

printf("%s\n", XMMErrorMsg(XMMError));
XMMFree (Handle) ;
exit(1);

else

{
if(XMMHandleInfo(Handle, &blksize, &freehnd, &lockmode) != NOERROR)

printf("%s\n", XMMErrorMsg(XMMError));
XMMFree (Handle);
exit{1);

}

printf("Reallocated 2nd XMM block: Handle
printf{"“Infos: size = %51ukb, free handles
blksize, freehnd, lockmode };

%d \n", Handle);
%3d, lock mode = %3d\n",

J

Related Functions:

XMMAlloc()

Chapter 4. AGXMM Function Reference

AGXMM Function Reference

57

AGXMM Function Reference IBM Internal Use Onfy

4.22 XMMSeek

Name:

XMMSeek - Resets the current position pointer in a Pscudo Tiile

Declaration:

Tong XMMSeek(int PFile_Handle, long offset, int fromwhere);

Synopsis:

#include <stdio.h>
#include "agxmm.h"

unsigned long pos; /* stores current position */
int PF_handle; /* Pseudo File handle */
lTong offset; /* offset to be used */

pos = XMMSeek(PF handle, offset, SEEK SET);

Description.

The function changes the current position pointer in a Pscudo File. 'L'he starting position from which to
compule the new offsct can be specified by means of the following macros defined in < stdio.h>:

SEEK_SET that corresponds to the beginning of the Pscudo Tile
SEEK_CUR that means starting from current position
SEEK_END that specifics the end of the Pseudo Tile

The function sets XMMlirror.

Return value:

The function returns -1 on crror, the new current position otherwise.

Example:

#include <stdio.h>
#include “agxmm.h”

irt PF_handle = 0;

---------- PSEUDO FILE SYSTEM INITIALIZATION R et
-- Open a Pseudo File ~-
-- Write operations --

/* Rewinds Pseudo file */

if{ XMMSeek(PF_handle, 0, SEEX_SET) == -1)
[

58 User's Manual

IBM lnternal Use Only AGXMM Function Reference

printf(XMMErrorMsg(XMMError));
exit(1);

}

-- Read operations --

-~ Close Pseudo File --

Related Functions:

XMMWrite(), XMM Tell(), XMMRcad()

Chapter 4. AGXMM Function Reference 59

AGXMM Function Reference IBM Internal Use Only

4.23 XMMTell

Name:

XMMTell - Returns the current position in a Pscudo File

Declaration:

long XMMTel1(int PFile nandle);

Synopsis:

#include “agxmm.h"

unsigned long pos; /* stores current position */
int PF_handle; /* Pseudo File Handle */

pos = XMMTel)(PF_handle);
Description:
The function gives the current position in the specificd Pseudo File, computing it from its beginning.

Return value:

The function retums -1 on error, the current position othcrwisc.

Example:

fiinclude "agxmm.h"

int PF_handle = G;

int PF _pos;

—————————— PSEUDO FILE SYSTEM INITIALIZATION T
-- Open a Pseuds File --
-- Write operations --

/* Tells position in Pseudo File */

if((PF_pos = XMMTel1(PF_handle)) == -1)

printf(XMMErrorMsg(XMMError));

exit(1);
]

printf("Current Pseudo File position is %1d",PF_pos);
-- Rewind and read operations --

-- Close Pseudo File --

60 Uscr's Manual

IBM Internal Use Only AGXMM Function Reference

Related Functions:

Chapter 4. AGXMM Function Reference 61

AGXMM Function Reference

4.24 XMMWrite

Name:

XMMWrite - Wrttes in a Pscudo Jile

Declaration:

int XMMWrite(int PFile_Handle, char *buf, unsigned int len);

Synopsis:

#include “agxmm.h"

unsigned int len; /*
int PF_handle; /*
char buf[65530]; /* buffer in
int written; /*

written = XMMWrite(PF_handle, buf,

Description:

number of bytes to be written */
Pseucdo File handle */
conv. memory */

collect # of bytes written */

Jen)3

IBM Internal Use Only

The function writes in a Pscudo lile len bytes taking them from a buffer allocated in conventional
memory. It starts writing from the current position in the Pseudo File; such a position can be changed
using the function XMMScek(). XMMWrite() checks if the parameter len exceeds the total true size of
the Pseudo File, signaling an crror if it is so. The function updates the current position pointer in the
Pscudo File and also sets XMMUirror. Pay attention to the fact that the maximum allowed value for the
parameter len is 64Kb due to the well known DOS segmentation limit.

Return value:

The function rcturns -1 on error, 0 at end of Pscudo Tiile and the number of bytes written otherwise.

Example:

#include “agxmm.h"

int PFile_Hand = 0;
char buffer[] = "strirga";

—————————— PSEUDO FILE SYSTEM INITIALIZATION mmmmmeeooo-

-- Open a Pseudo File --

if(XMMWrite(PFile_Hand, buffer, strlen(buffer)) == -1)

printf(XMMErrorMsg{ XMMError));
exit(1);

}

-- Close Pseundo File --

62 User's Manual

IBM Internal Use Only AGXMM Function Reference

Related Functions:

XMMRead(), XMMSeck(), X MM Tell()

Chapter 4. AGXMM Function Reference 63

AGXMM Function Reference IBM Internat Use Only

4.25 XMMVersion

Name:

XMMVersion - Tells which is the version of XMS, XMM and the status of [IMA

Declaration:

int XMMVersion(int *XMS_ver, int *XMM_ver, int *HMA flag);

Synopsis:

#include "agxmm.h"

int XMS_ver; /* XMS version number */
int XMM_ver; /* XMM version number */
int HMA flag; /* HMA status flag */
int €C;

EC = XMMVersion(int *XMS ver, int *XMM ver, int *HMA flag);

Description:

The function works out the version number of XMS-and XMM along with the status flag of HMA. The
latter variable 1s 0 if IIMA ts not available, | otherwisc. Version numbers arc given in BCD format.

Return value:

The function returns the error code stored in XMMError.

Example:

#include "agxmm.h"

irt XMS ver; /* XMS version number */
int XMM_ver; /* XMM version number */
int HMA flag; /* HMA status flag */

/* query version numbers and HMA flag */

if(XMMVersion(&XMS_ver, &XMM_ver, &4MA_flag) != NOERROR)
{
printf(“%s\n”, XMMErrorMsg(XMMError));
exit(1);

J

printf(“eXtended Memory Specification version %x.%x installed\n"
" eXtended Memory Manager version %x.%x installed\n"
" High Memory Area status %x \n\n",
XMS_ver>>8,XMS_ver&0x00ff ,XMM_ver>>8 ,XMM_ver&0x00ff,
HMA flag);

Related Functions:

64 User's Manual

IBM Internal Use Only AGXMM Function Reference

Chapter 4. AGXMM Function Reference 65

AGXMM Function Reference {BM lInternal Use Only

66 User's Manual

IBM Internal Use Only

Appendix A. Table of functions per library layer

Function

Description

BASIC XMM LAYER

XMMAccess () Initiatizes and accesses the eXtended Memory
Manager

XMMAT 1oc() Allocates XMM memory

XMMCopy () Copies memory areas to/from eXtended memory

XMMcoreleft () Computes remaining free eXtended memory

XMMErrorMsg () Returns the pointer to a proper error message

XMMFree () Releases previously allocated XMM memory

XtMHandleInfo () Gets EMB handles information

XMMInstalled() Checks if XMM is installed

MapError() INTERNAL! Calculates values for XMMError
variable

XMMmaxblock () Calculates the size in bytes of the biggest
free EMB

XMMReAl Toc ()
XMMVersion()

PSEUDO FILES

Resizes an allocated EMB
Returns XMs and XMM versions and HMA status

XMMClose () Closes a Pseudo File, releasing eXtended Memory
XMM_files init() Initializes the Pseudo Files System
XMMOpen () Opens a Pseudo File of given size
XMMRead () Reads data from a Pseudo File
XMMSeek () Sets the current position pointer in a
Pseudo File
XMMTel1 () Returns the current position in a Pseudo File

XMMyrite ()

VIRTUAL ARRAYS

Writes data in a Pseudo File

Accesses a Virtual Array element

Closes a Virtual Array

Creates a Virtual Array

Accesses a Virtua)l Array element (fast read)
Creates a Virtual Array using data in

an existing Pseudo file

toads a file from disk and makes it available
as a Virtual Array

XMMAccess v_array()
XMMClose_v_array()
XMMCreate_v_array()
XMMFast Access_v_array()
XMMInit v_array()

XMMLoad_v_array()

Appendix A. Table of functions per library layer

67

IBM Internal Use Only

68 User's Manual

IBM Internal Use Only

Appenrdix B. Example Programs Source Files

B.1 AGXMMTST.C - general test program.

/*************************************ﬁ*********************************k*****

* Module: Sources AGLIB.LIB -> AGXMMTST.C

* o+ *

Use: XMM memory management test program.

* Alessandro Bondi - Gianluca Chiozzi
*

* Date: 20/07/90 Last Rev. :08/10/90

*
*********************k****i***i/

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <string.h>

#include "agxmm.h"

/*****************/

/* Main function */
/**********#**i***/

void main()

int Handlel, Handle2, freehnd, lockmode;
unsigned long blksize;

int XMS_ver, XMM_ver, HMA flag;

unsigned long memsize;

XMMCOPYBLOCK test;

char *string = “XMM Allocation and Copy test string®;

char *string2 = "3
printf(u\n\n***\nu);
printf(" *\n");
printf(o Test for XMM aglib functions *\n");
printf(i \n");
pr‘intf("k *\nn);
printf(o A.Bondi - G. Chiozz) *\n");
printf(“* Centro Ricerca Milano - IBM Semea Sr1 *\n");
printf(nx 25 Luglio 1990 \n");
printf(H*****t***************k**********i**********\n\nn);
printf{ " -- IBM Internal Use Only --\n");

/i***********************************/

/* Tests to see if XMM is installed */

/***********t****************#*******/

if((XMMAccess()) != NOERROR)
{

printf("Unable to Access XMS\n");

Appendix B. Example Programs Source Files

69

IBM Internal Use Only

exit(1);
}

/******************‘k************k***k/

/* Gets XMM version */
/************k***************ﬁ*******/

if(XMMVersion (&XMS_ver, &XMM ver, &HMA_flag) != NOERROR)

printf("%s\n", XMMErrorMsg(XMMError));
exit(1);
}

printf(“eXtended Memory Specification version %x.%x installed\n"
" eXtended Memory Manager versior %x.%x installed\n*
" High Memory Area status %x \n\n",
XMS_ver>>8,XMS_ver&0x06ff,XMM ver>>8 XMM ver&0Ox00ff,
HMA_flag);

/****************************t*******/

/* Gets XMM free mem */

/************************************/

if((memsize =XMMcoreleft()) == 0) /* Total free mem */
{

printf{ "%s\n", XMMErrorMsg(XMMError));
exit(1);

}

printf("Found %Tu XMM bytes unused\n”, memsize); /* Max free block */

if((memsize =XMMmaxblock()) == 0)
(

printf(“"%s\n", XMMErrorMsg(XMMError));
exit(1);
J

printf("Found %lu bytes for max free block size\n", memsize);

k***************‘k*******‘k************************/

/* Allocates 2 XMM memory blocks */

/***/

if((Hondlel = XMMAlloc(1024*3)) == Q)

printf("%s\n", XMMErrorMsg(XMMError));
exit(1);

)
if(XMMHandleInfo(Handlel, &blksize, &freehnd, &lockmode) != NOERROR)
printf("%s\n", XMMErrorMsg(XMMError));

XMMFree (Handlel);
exit(1);

printf("Allocated 1st XMM block: Handie = %d \n", Handlel);
printf(" Infos: size = %51uKb, free handles = %3d, Tock mode = %3d\n",

70 User's Manual

IBM Internal Use Only

blksize, freehnd, lockmode);

/* Allocates Handle2 for a 2Kb block */
if((Handle2 = XMMA)loc(1024*2)) == 0)
(
printf("%s\n", XMMErrorMsg(XMMError));
XMMFree (Handlel);
exit(1);

if(XMMHandleInfo(Handle2, &blksize, &freehnd, &lockmode) !'= NOERROR)

printf("%s\n", XMMErrorMsg(XMMError));

XMMFree (Handlel);

XMMFree (Handle2) ;

exit(1);

}
printf(”Allocated 2nd XMM block: Handle = %d \n",
printf(" Infos: size = %5luKb, free handles = %3

blksize, freehnd, lockmode);

/****************t***********************k********/

/* Reallocates 2nd block for a 3kb size from 2Kb */

/*****************k**************************k****/

if(XMMReAlloc(Handle2,1024*3) 1= NOERROR)
{

/* Not all XMM support this function (for example
if(XMMError == UNKFUNCTION)

printf("\n\nATTENTION: This XMM does not suppo

)

else

printf("%s\n", XMMErrorMsg(XMMError));
XMMFree(Handlel);

XMMFree(Handle?);

exit(1};

else

if(XMMHandlelInfo(Handle2, &hlksize, &freehnd, &1
{
printf("%s\n", XMMErrorMsq(XMMError));
XMMFree (Handlel);
XMMFree (Handle2);
exit(1);

Handle2);
d, lock mode = %3d\n",

QEMM 5.0 does not) */

rt EMB reallocation!\n\n"};

ockmode) != NOERROR)

printf("Reallocated 2nd XMM block: Handle = %d \n", Handle2);

printf(* Infos: size = %51ukb, free handles =
blksize, freehnd, lockmode);

/**********************t***********************/

/* Test for XMM copy functions */

%3d, lock mode = %3d\n",

Appendix B. Fxample Programs Source Files

71

IBM lInternal Use Only

/**************ir******t************************/

printf("XMM copy test:\n");
/*** Copy from conventional memory to conventional memory ***/

test.bsize = strien(string)+1;

test.src_Handle = 0; /* 0 to use conventional memory */
test.src_off.address = string;

test.dest Handle = 0;

test.dest off.address = string?2;

if(XMMCopy (&test) != NOERROR)

printf("%s\n", XMMErrorMsg(XMMError));
XMMFree (Handlel);

XMMFree (Handle2);
exit(1);
printf(* '%s' copied from conv mem to conv mem\n",string2);

/*** Copy from conventional memory to XMM ***/

test.bsize = strlen(string)+1;

test.src_Handle = 0; /* 0 to use conventional memory */
test.src_off.address = string;

test.dest Handle = Handlel;

test.dest off.offset = 01,
if(XMMCopy(&test) '= NCERROR)

printf(XMMErrorMsg(XMMError));
XMMFree (Handlel);

XMMFree (Handle2);

exit(1);

printf(" '%s' copied from conv mem to XMM\n",string);
/*** Copy from XMM to XMM ***/

test.bsize = strien(string)+1;
test.src_Handle = Handlel;
test.src_off.address = 0},
test.dest_Handle = HandleZ;
test.dest off.offset = 01,

if(XMMCopy (&test) != NOERROR)

{
printf(XMMErrorMsg(XMMError));

XMMFree(Handlel);
XMMFree (Handle2)
exit(1);
}
printf{" ’'%s' copied from XMM to XMM\n",string);

/*** Copy from XMM memory to conventicnal memory ***/

test.bsize = strien(string)+1
test.src_Handle = HandleZ;

72 User's Manual

IBM Internal Use Only

test.src_off.offset = 01;
test.dest Handle = 0;
test.dest off.address = string;

if(XMMCopy(&test) != NOERROR)

printf(XMMErrorMsg(XMMError));
XMMFree (Handlel);

XMMFree (Handle2);

exit(1);

!

printf(" '%s' copied from XMM to conv mem\n",string);

/********)*******************t********W*********ﬁ***/

/* Test for PseudoFile funcs (dusty) */

/***’kﬂ************k*********i***********i***********/

int PFile Hand = 0;
char *fname = "filename.PF";

printf("\n\nXMM Pseudo Files Test\n");
/* Init pseudofiles manager */

if(XMM_files init() '= NOERROR)

{
printf(XMMErrorMsg(XMMError));

XMMFree (Handlel);
XMMFree (Handle2) ;
exit{1);

}

/* Opens a pseudofile */
if((PFile Hand = XMMOpen(fname, G, 2048)) == -1)
printf(XMMErrorMsg(XMMError));
XMMFree (Handiel);
XMMFree (Hand1e2) ;
exit(1);
printf("Opened Pseudo File %s (PFile_Handle %d)\n",fname,PFile_Hand);
/* Writes string on Pseudo File */
if(XMMurite(PFile Hand,string, strlen(string)+l) == -1)
printf(XMMErrortsg(XMMError));
XMMFree(Handlel);
XMMFree (Randle?2) ;

exit{l);
)

printf("Written string: current position is %Id \n", XMMTel)(PFile_Hand));

/* Rewinds Pseudo file and reads string again */

Appendix B. Example Programs Source Files 73

IBM Internal Use Only

if(XMMSeek (PFile_Hand, 0, SEEK SET) == -1)

{
printf(XMMErrorMsg(XMMError));

XMMFree(Handlel);
XMMFree (Handle2) ;
exit(1);

)

strcpy(string2,”"teststr®);
if(XMMRead (PFile_Hand,string2, strlen(string)+1) == -1)

printf(XMMErrorMsg(XMMError));
XMMFree(Handlel);

XMMFree (Handle2);

exit(1);

}

printf("The read string is: %s \n", string2);
/* Closes the pseudo file after use */
if(XMMClose(PFile Hand) != 0)

{
printf(XMMErrorMsg(XMMError));

XMMFree (Handlel);
XMMFree (Hardle2);
exit(1);

printf("Closed Pseudo File\n®"};

} /* end test for pseudo files */

/************************************/

/* Gets XMM free mem */

/************************************/

XMMFree (Handlel) ;
XMMFree (Handle2);

printf("Releasing XMM blocks\n");
if((memsize =XMMcoretleft()) == 0) /* Release memory block */

printf(XMMErrorMsg(XMMError));

exit(1);
}

printf(* now %lu XMM bytes unused\n", memsize);
exit(0);

} /* end main() */

T4 User's Manual

IBM Internal Use Only

Appendix B. Iixample Programs Source Files 75

B.2 AGXMFTST.C - Pseudo File use example program

/*t************************************k***********************************t**

* Module: Sources AGLIB.LIB -> AGXMFTST.C

*

Use: XMM Pseudo File management test program.
Ajessandro Bondi - Gianluca Chiozzi

Date: 23/10/90 Last Rev. :23/10/90

*
*
*
*
*
*

***********************k***/

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <string.h>

#include "agxmm.h"

/*****************/

/* Main function */
/*****************/

void main()

int PFile_Hand = 0;

char *string = "XMM Pseudo Files test string";
char *string2 = vy
char *fname = "Filename.PF";

printf(u\q\n***\nu)

printf(n "\n");
printf(“* Test for XMM PseudoFiles functions *\n");
prmtf("k *\nu);
printf(nx *\n");
printf(" A.Bondi - G. Chiozzi *\n");
printf("* Centro Ricerca Milano - IBM Semea Sr1 *\n");
printf(nx 25 Luglio 1990 *\n");
printf(H***\n\n“);
printf(" -- IBM Internal Use Only --\n");

/**************************kk********/

/* Tests to see if XMM is installed */

/**ﬁ****************ﬁ**************k*/

if((XMMAccess()) != NOERROR)

printf("Unable to Access XMS\n");
exit(1);
/*******k************************************/

/* Test for PseudoFile funcs o*/

/*************************k******************/

76 User's Manual

IBM Internal Use Only

IBM Internal Use Only

/* Init pseudofiles manager */
if(XMM_files_init() != NOERROR)

printf(XMMErrorMsg(XMMError));
exit(1);

}
/* Opens a pseudofile */

if((PFile_Hand = XMMOpen(fname, 0, 2050)) == -1)

printf(XMMErrorMsg{ XMMError));
exit(1);

printf("Opened Pseudo File %s (PFile_Handle %d)\n",fname,PFile Hand);
/* Writes string on Pseudo File */
printf("String to be written on file: %s\n",string);

if(XMMWrite(PFile Hand,string, strlen(string)+1) == -1)

{
printf(XMMErrorMsg(XMMError));

exit(1);
)

printf("Written string: current position is %1d \n", XMMTell(PFile_Hand));
/* Rewinds Pseudo file and reads string again */
if(XMMSeek(PFite Hand, 0, SEEK_SET) == -1)

printf(XMMErrorMsg(XMMError));
exit(1);
)

/* Reads string from file and puts it on a new buffer */

if(XMMRead(PFile Hand,string2, strlen(string)+1) == -1)

{

printf(XMMErrorMsg(XMMError));
exit(1);
}

printf("The read string is: %s \n", string2);

/*******ﬁ***k********k**************i***k****************/

/* Access file information on XMM fchain data structure */
/******i***ﬁ*****k***ﬁ*****************i*****************/

/* The array element to be accessed is XMM_fchain(PFile Hand) */

printf("CURRENT PSEUDG FILE STATUS:\n");

printf("® PFile name : %s\n", XMM_fchainfiPFile_Hand“.name };
printf(* EMB Handle ! %d\n", XMM_fchainflPFile Hand".Handle };
printf(* Curr. Pos. : %1d\n", XMM_fchainflPFile Hand".offset);

Appendix B. Lxample Programs Source Tiles

77

1BM Internal Use Only

printf(" max PFile size : %1d Kbytes\n",
XMM_fchainflPFile_Hand".bsize);

printf(" actual PFile size: %1d\n",
XMM_fchainfiPFile_Hand".filesize);

printf(" PFile mode : %d\n", XMM_fchainflPFile Hand“.flags);

/* Closes the pseudo file after use */

if(XMMClose (PFile_Hand) != 0)

printf(XMMErrorMsg(XMMError));
exit(1);

printf("Closed Pseudo File\n");
exit(0);

} /* end main() */

78 User's Manuat

IBM Internal Use Only

B.3 AGXMVTST.C - Virtual Arrays use example program

/***********ﬁ**************)\’***i****

* Module: AGLIB -> AGXMVTST.C

*

of els.

R S S S S

*

*

Use: Test Program for XMM Virtual Arrays Functions

Author: Alessandro Bondi - Gianluca Chiozzi

Date: 25/07/90 Last Rev. : 28/08/90

Command Line : agxmvtst flarray size fiiprintout step flbuf.size fiseg.size """

byte # of els.

***********t*************************k**********t**********t*****************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <io.h>

#include "agxmm.h"
unsigned _stklen = Oxffff;

/********************************/

/* Access Macros */
/**i**************‘kk******t******/

#define XMM_VREC(i) {(items *)XMMAccess_v_array(item array, i))

#define item(i) XMM VREC(i)->v_item
#define qty(i) XMM_VREC(i)->v gty
#define desc(i) XMM _VREC(i)->v_desc

/***************k************‘k*k*********/

/* Array Elements Structure typedef */

/********k********i***k******k**********t/

typedef struct

{
long v item, v qty;
char v_descfl24®;

}

items;

/*tk*********k**********i*ti*************/

/* Local function prototypes */

/ﬁ*ﬁ**********k**************************/

void MyErrorfunc{ int ErrCode);

#ifdef 1BMC2
void randomize(void);
#endif

Appendix B. Iixample Programs Source [iles

79

/**/

/* Start Main Program */

/**/

main(int argc, char *argvfl")
{
int step = 50;
XMM_VACS *item_array;
unsigned long i;
int PFile Handle;
unsigned long arrsize, bsize, segsize;
long temp;
items fillchar;
clock t t1,t2, empty t, full t;
FILE *flog;
ldiv_t ltemp;

/*

fillchar.v_item = -1;
fillchar.v gty = -1;
strcpy(fillchar.v_desc, "Null_array_item

if(argc == 1)

arrsize = 1009
else
arrsize = atol{argvfil");

if(argc >= 3)
step = atoi (argvifi2");

if(argc >= 4)
bsize = atol{argvii3");
else
bsize =

/* Max Data Buffer Size in byte
03

if(argc >= 5)

segsize = atol (argvfé"); /¥ # of elements per segment
else
segsize = 0;

if (access("XMVARTST.TIM", 0 } !=0)
{

flog= fopen ("XMVARTST.TIM", "w");

timing variables
/* measurements file

¥BM Internal Use Only

*/
*/

*/

*/

fprintf(flog,H\n\n*************k*****************************\nu);
fpr]ntf(f]og, "k *\nu);
fprintf{fiog, ** Test for XMM virtual arrays functions *\n");
fprintf(fleg, “* *\n"};
fprintf(flog, 1 A.Bondi - G. Chiozzi \n");
fprintf(flog, "* Centro Ricerca Milano - IBM Semea Srl1 *\n"};
fprintf(flog, n 25 Luglio 1990 \n");
fpr1 ntf(flog’ |lt***************‘k*ti********‘k*t************\n\nil) ;
fprintf(flog, " -~ IBM Internal Use Only --\n");

fprintf(flog, “\n\n Tota) Size (Kb) | Buffer Size (Kb) | *
"Segrent Size(b) |
}

else
flog = fopen{"XMVARTST.TIM" "a");

80 Uscr's Manual

Mean Access Rate(b/sec)\n\n\n");

IBM Internal Use Only

printf(ll\n\n**fr*i**ﬁ*************tk******ﬁt*k***ﬁ*kt***\nn) .

]
printf(o x “\n");
printf(n* Test for XMM virtual arrays functions *\n*);
printf(" “\n"};
printf{ " A.Bondi - G. Chiozzi *\n");
printf("* Centro Ricerca Milano - IBM Semea Srl *\n");
printf(" 25 Luglio 1990 *\n"};
pr]ntf(II*********************i‘k*\l***i********t****t\n\nu) ;
printf(" -- IBM Internal Use Only --\n"};

printf("Testing for an array of %lu elements %d bytes long\n\n",
arrsize, sizeof(items));

printf(" - Command Line : \n"
" agxmvtst flarray size flprintout step flbuf.size fiseg.size""""\n"
" # of els. byte # of els.\n");

XMM_Varr error = MyErrorFuncg

if(XMMAccess() !'= 0)

{

printf("Unable to access XMS\n");
exit(1);

}

if(XMM_files init() !'= NOERROR)

(

printf("Unable to access XMS Pseudofiles\n");
exit(1);

}

/* create a virtual array setting element size */
/* the size of item structure and setting the */
/* initialization char to space char */

if((item array = XMMCreate v_array("Prova", arrsize, sizeof{items),
(char *)&fillchar, bsize, segsize)) == NULL)
{
printf("%s\n", XMMErrorMsg(XMMError));

exit(l);
)

bsize item_array->bsize;
segsize = item array->segsize;

/* fills in arrsize array items and watch time */

for(i=0 ; i<arrsize ; i++)

{

item(i) = i+1;

qty(i) = 0;

sprintf(desc(i), "item # %1d", i+l);

J

/* prints content of filled items */

for(i=0 ; i<arrsize ; i+= step)

[
printf("Element # %1d Item = %1d Qty = %1d Desc = %s %d\n",

Appendix B. Example Programs Source Files

81

i, item(i), qty(i), desc(i), (irt)desc(i)f23");
J

/*
Sequential Access Test Loop
*/
printf("WAIT! : Testing Sequential Access Performances\n");
tl = clock(); /* Empty Sequential Acces loop */
for(i=0 ; i<arrsize ; i++)
temp = i;
t2 = ciock();
empty t = t2 - tl1;
t1 = clock(); /* True Sequential Acces loop */
for(i=0 ; i<arrsize ; i++)
temp = item(i);
t2 = clock();
full £ = t2 - tl;

printf("Sequential Access Rate: %12.3f bytes/sec\n",
(CLK_TCK*arrsize*sizeof(items))/(full_t-empty t+0.00001));

fprintf(flog," %41u [%41u |
" %41u | Seq %#12.3f \n\n",
arrsize*sizeof(items)/1624, bsize/1024,
segsize*sizeof(items),
(CLK TCK*arrsize*sizeof(items))/(full_t-empty t+0.00001));

/*
Random Access Test Loop
*/
printf("WAIT! : Testing Random Access Performances\n");
randomize(); /* Initiaiize random # generator */
tl = clock(); /* Empty reference loop */

for(i=0 ; i<arrsize ; i++)

Ttemp = 1div(((unsigned long)rand() * rand()) , arrsize);
t2 = clock();
empty t = t2 - t1;

tl = clock(); /* True Random Access Loop */
for(i=0 ; i<arrsize j; i++)
{

Ttemp = 1div(((unsigned long)rand() * rand()) , arrsize);
temp = item()temp.rem);

t2 = clock();
full t = t2 - t1;

printf("Random Access Rate: %12.3f bytes/sec\n",
(CLK_TCK*arrsize*sizeof(items))/(full_t-empty t+0.00001));

fprintf(flog," | | -

82 User's Manual

IBM Internal Use Only

IBM Internal Use Only

" | Ran %#12.3f \n\n*,
(CLK_TCK*arrsize*sizeof(items))/(ful) t-empty t+0.00001));

fctose(flog);

/% closes virtual array */

if((PFile_Handle = XMMClose v array(item_array)) == -1)

{

printf("%s\n", XMMErrorMsg(XMMError));
exit(1);

}

if(XMMClose (PFile Handle) != NOERROR)

{
printf("%s\n", XMMErrorMsg(XMMError));

exit(1);
J

return(0);

} /* end main */

void MyErrorfunc(int ErrCode)

printf("%s\n", XMMErrorMsg(ErrCode));
exit(1);
}

#ifdef IBMC2

/**********k*****k************i*************************************t******

* Function: void randomize(void)

*

* Use: For IBMC2 (it is a standard TURBOC function): seeds the
* random number generator to a random value (uses time() so
* time.h must be ipcluded)

*

* Arguments:

*

* Returns:

*

* Date: 28/08/90 Last rev:

*

****************************t*************************************ii******/

void randomize(void)

{

time_t now;
srand((unsigned int)time(&now));

} /* end randomize */

Appendix B. Example Programs Source Files

83

IBM Internal Use Only

#endi f

84 User's Manual

IBM Internal Use Only

Appendix C. Bibliography

[1 Ray Duncan - MS-DOS Fxtensions, 1989, Microsoft I’ress
(2] Mark Tichenor - Virtual Arraps in C, May 1988, Dr Dobb’s Joumnal

Appendix C. Bibliography 85

====7-= IBM Semea

Milan Scientific Center
Circonvallazione Ildroscalo
1-20090 Segrate (Milano, Italy)

