
--- ------ ----
;: - -:§'"§: I BM Semea

Milan Scientific Center

SCM-0001
January 1991

AGXMM - A C Library for Extended Memory Manager
User's Manual

IBM Internal Use Only A. Bondi, G. Chiozzi

IBM Internal Use Only

AGXMM - A C Library for Extended Memory Manager
User's Manual

by

A. Bondi', C. Chiozzi'

IBM Milan Scientific Cenler, Milan, Ita ly
email: bondi@milvmsc
IBM Milan Scientific Cenler. Milan. Ita ly
email: chiozzi (@ milvrnsc

1

IBM Inl ema l Use Only

Contents

Chapt"r I. Prefare

C1,aptcr 2. AGXMM - A (' lihrary for eXtruded Memory Man.~er
2. I Introduction
2.2 Ovcrview
2.3 Softwarc and Ilardware requirements.
2.4 U,ing AGXMM
2.S Devc\opping ACiXMM
2.6 Inslalling AGXMM
2.7 ACiXMM hie,

('haph'r 3. A(;XMM Tedlllil-al Ilcfcrrncc
3.1 EXTENDED MEMORY SPECIFICATIO N

3. 1.1 X MS Dev ice Driver
3.1.2 I .ihmry , lruelure

3.2 B;tsic runction s layer
3.2. 1 Inilializing XMM
3.2.2 Getting inronnatioll
3.2.3 Allocating and freeing EXtc"ded Memory Blocks
:\ .2.4 Data exchange hctwc(,1l co nven tional and eXtended Memory

3.3 P,eudo- Files
:\.3. I Introduction
3.3.2 Pseudo-i ;ilcs System initialization
3.3 . ~ Access to Pseudo-hIes

3.4 Virtual Array,
3.4.1 Introduction
3.4.2 Initializing the Virtual Array, manager
:1.4.3 Creating Virtual Array,
~.4.4 AccCl'S notation
.1.4.5 Clo'ing Virtual Array,
3.4.6 Caulio n,
3.4.7 Frror Illanagement for Virtual Array,

Chapter 4. AGXMM Fundion Il"ferencc
4.1 X M M fih- , init
4.2 XMMAccess
4.3 XMMAec('''_v_'rray
4.4 XMMAlloe
4.S XMI\1C1ose
4.6 XMMClosc_,,_array
4.7 XMMCopy
4.8 X M Mcoreleft
4.9 XMMCreate_v_army
4. 111 XMMErrorM'g
4. 11 XMM Fa' t_Accc,,_v_array
4.12 XMMhcc
4. 1:l XMM llandlclllf(,
4.14 XMMlnit_v_array
4.15 XMM IIl , tallcd
4.lfi X~IMI .()"d_v_array

4.17 Map Error
4. 18 XMMmaxblock

3
3
3
4
4
4
S
S

7
7
7
7
8
8
9
9

10
10
10
11
11
14
14
15
IS
16
19
19
22

25
25
26
27
29
30
32
33
3S
36
39
40
42
43
45
47
48
SO
SI

Contents iii

4.19 XMMOpcn .
4.20 XMMRead
4.21 XMMReAlIoe
4.22 XMMSeek
4.23 XMMTell
4.24 XMMWrile
4.25 XMMVersion

Appendix A. Table of functions per library layer

Appendix n. Example Programs Source Files
D.I AGXMMTST.C - general le si program.
D.2 AGXMI"'TST.C - Pseudo File use example program
0.3 AGXMVTST.C - Virtual Arrays use example program

Appendix C. lIibliography

iv User IS Manual

IBM Inlernal Use Only

52
54
56
58
60
62
64

67

69
69
76
79

85

1 nM Internal Use Only

Chapter 1. Preface

Purpose or this runction library is to overcome the well known DOS limitations regarding memory manage­
ment (640 kbytes of memory and 64 khytes -segment si7.e- ma< for a single data block). We paid a special
attention in order to create a rriendly environment in which the user can handle eXtended Memory in a
transparent way just as if he was working with conventional fi1es or arrays.

This library is based upon the eXtended Memory Specification (XMS) as provided by Microsoft Corp. and
requires an eXtended Memory Manager (XMM) such as I1IM EM.SYS.

At the moment , only a small number of functions have been devclopped, but they already permit a full use
of eXtended Memory ; they can be divided into:

basic XMM access runctions.

Pseudo Files fllnctions: to lIse XMM as a simple but fast file system.

Virtual Arrays functions: to address large arrays stored in eXtended Memory in a transparent way.

We plan to improve our lihrary in order to satisry more complex needs. User's suggestions are welcome;
you should refer to the following addresses:

Alcssandro Bondi : BONDI at MII,VMSC; Phone: + 39(2)754R.4147

Gianluca Chio7.zi : CIII0771 at MILVMSC; Phone: + 39(2)754R.4516

IBM Semea - Centro Ricerca di Milano - 20090 Segrate (MI) - Italy

Chapler 1. Prerace

IIlM Internal Use Only

2 User ' ~ Man ua!

IBM Internal Use Only Introduction

Chapter 2. AGXMM - A C library for eXtended Memory
Manager

2.1 Introduction
This manual 1 is divided in three parts:

This chapter: a general introduction to AGXMM

• Chapter 2: technical reference.

Chapter 3: functions reference.

The first part contains general information on how to use the library, such as supported compilers, software
and hardware requirements and so on.

Information on how the lihrary is structured and implemented and simple general examples arc given in the
second chapter, while the third onc is a complete list of all the implemented functions.

Several Technical Notes are added throughout the text in order to explain in more detail some topics that
may be relevant for those wishing to extend the library. The mere user will not probably need to read them,
and the whole manual can be profitably understood skipping them at all.

2.2 Overview
AGXMM has been created in order to put the eXtended Memory installed on 80,86 based personal com­
puters at full disposal of C programs devclopped under DOS operating system. AGXMM is currently sup­
ported for the following compilers:

Compiler

mM C2 V 1.10
Microsoft C
Borland TURBO C V2.0

Compiler ID

mMC2
mMC2
TURBOC

For these compilers, precompiled libraries are available. However, everybody is welcome to port AGXMM
functions to other compilers.

The library is available in two distribution versions:

"recompiled library

Source code

I This shows how the special charilclers llsed in this document look like on your printer (ir they are printed at all).

Curly braces: ' (, ,) ,
Square brackets: T '1 '
Vertical bar (I ogi ca I OR in C) : ' ,
Ti Id. (binary NOT in C) :
Caret (binary XOR in C) : "

,

Chapler 2. AGXMM - t\ C library for eXtended Memory Manager 3

Introduction

2.3 Software and Hardware requirements.
lIardware
- filM PS/2 with eXtended Memory Expansion Card
Software

An eXtended Memory Manager (such as Microsoft IIIMEM.syS)
- A C compiler' (sce above for supported list)

2.4 Using AGXMM
Using AGXMM is simple. Only a few things arc nceded:

I. Reading and understanding the AGXMM reference manual.
2. Installing AGXMM on your system just to use it.
3. Installing an eXtended Memory Manager (such as Microsoft's IIIMEM.syS)
4. Defining thc Compilcr ID symhol.
5. Including the file "agxmm.h" in your C source.
6. Linking the AGXMM library and ohjcct files.

IDM Inlernal Use Only

The AGXMM includc file "agxmm .h" should be included at the cnd of the other files included. The
AGXMM library should be linked as onc of the first libraries. The compiler ID must be defined as a pre­
processor symbol with the value I (usually using the -D option of the compiler).

2.5 Developping AGXMM
Uscrs of AGXMM are encouraged 10 devclop it. The following is needed:

I. Onc or more of the supported C compilers.
2. Installing AGXMM on your system t.o develop it.

Whenever a new function is added to AGXMM, the following rules should be obeyed:

A function prototype must be added to "agxmm.h".

When new types, structures, constants, etc. appear at the function interface, they must be defined in
"agxmm.hn.

• All new identifiers (function names, type namcs, various kinds of preprocessor names) should follow
well-thought naming conventions, which are up to the developper. A common practice is to use a
unique prefix for the names. The new identificrs must not conflict with any previously defined identifier
in the standard libraries for the particular compiler.

Structures must he independent of whether structure packing is used or not.

The following arc good sources to get information about fun ctions already defined:

• C libraries of the most popular compilers (norland TurhoC V2.0+, IBM C/2 V 1.1 +, filM C/AIX,
Unix System V)

• A NSI C Standard

IBM SAA C I'I C Rderence

2 X M M i!\ ncccsfiary in fh e presence of large memory demand, so the lihrary has heen developed to work under lArge
memory mudel; however il is possihle, with small modifications, to use it under diflcrcnl memory models.

4 User IS M<1nll<11

IBM Internal U~C Only Introduction

2.6 Installing AGXMM
i\GX M M comes in two levels of detail:

• As a user archive for a ~pccific compiler.

• As a source archive.

In order to use i\GXMM, only the user archive for that compiler is needed. In order to develop i\GXMM,
only the source archive il'l needed. To install the source archive, uownloau it into any ~ubdircct()ry.

2.7 AGXMM Files
We think it useful to provide a general list of the source files that constitute the library.

Chapter 2. ACiXMM - 1\ C lihrary ror eXtended Memory Manager 5

Introduction

Filename Description Only source arc.

INCLUDE FILES
agxrrm.h

C SOURCE FILES
aglibeng.c
agxmm. c

agxrrmfi I . c
agxlOOIvar.c
calcbyte.c

C EXAMPLE FILES
agxmfts t. c
agxrrmts t. c
agxmvtst.c

LIBRARIES
agxmmc2. lib
agxmmtc. lib

OBJECT FILES
agxmm.obj

TC PROJECT FILES

Main include file

English language messages
Bas i c XflM funct ions.
To be compiled ONLY in TURBOC
for C2 link agxmm.obj
Pseudo-Files functions
Virtual arrays functions
Used by agxmm.obj to be compiler
independent

Example program to test Pseudo File functions
Example program to test library
Example program to test virtual arrays

Functions library for IBM C2 1.1
Functions library for TURBOC 2.0

Basic XI·IN functions .obj file
to be linked when using C2 compiler

agxmmtst.prj TURBOC project file for agxrrmtst.c
compi 1 ed fr'om 1 i brary sources

BATCH FILES
aglibc2.bat To make library from sources

with IBJ.1 C2
aglibte.bat To make library from sources

wi th TURBOC
agxmmts t. bat To comp ile agxmmtst.c program with IBM C2

from library sources

OTHER FILES

bateoll. txt Collection of example batch and
TURBOC project files

6 User's Manual

X

X
X
X

X

X

X

X

X

IBM Inlernal U,e Only

IBM Internal Use Only AGXMM Technical Reference

Chapter 3. AGXMM Technical Reference

3.1 EXTENDED MEMORY SPECIFICATION
The increasing demand of memory, even for PC application programs, makes the 640Kb limit of MS-DOS
too narrow.

The eXtended Memory Specification (X MS) [I] defines a software interface that permits to manage memory
areas not usually available to MS- DOS operating system.

Technical note 1:

3.1.1

XMS all o ws applicati o ns to allocate, ref:i7.e and rree three kinds or memory blocks:

Extended Memory Bloch (EM B), that is physical memory placed at addresses above 10R8Kb;

lligh Memory Area (I IM A), I.hat is physical memory placed between I024Kb and 1088Kb.

The addressability or this area sterns rrom how the MS -noS manages memory. IIMA corresponds to the MKb segment
addressed l1y the value OxFFFF or the segment register. There exists a bus line, named A20, that controls how these
addresses are physically mapped 011 memory; XMS provides a hardware independent management or this line. ny derault,
line A20 is disabled so that I IMA is not used as such, but is femapped onto the I1rst mcmory segment (locations 0000:0000
to OOOO:FFPF); otherwise, the area is seen as a rurther physical segment above 1Mb.

Some applications assume that memory wraps around the I Mb limit (A20 disabled), so the programmer should take care
to let it down after use.

Upper Memory Blocks (UMn), that is physical memory placed between 640Kb and 1024Kb.

Up to now, thi!> library provides runcti0ns ror thc !>upport or EMB only.

XMS Device Driver
In order to use XMS on your computer you must first install the proper device driver, that is an eXtended
Memory Manager (XMM). As an example, wc will describe the procedure to install the standard Microsoft
prototype (IIIMEM.SYS):

• Edit your CONFlG.SYS file
Add the line

DEVICE = l'alh\ IIIM EIV1.SYS

where path indicates where the driver is placed
11'1, your system

Technical note 2:

III M I ~M.S YS supporlS the rollowing options:

IIIMAMIN = n

INUMIIANf)I.ES = n

that specifics the minimum size or '!MA that a program can allocate (O-63Kb, def = O).

that specifics the rna:<imum number of active XMS handles (0-128, dcf = 32).

Warning: IIIMFM.SYS may be in conflict with other devices previously installed on your system; if some­
thing goes wrong, check your device drivers installation manuals, wit.h a special attention to other memory
managers, such as Expanded Memory Manager. Only onc XMM is allowed at the same time.

3.1.2 Library structure

The basic XMS functions for the EMIl management constitute the first layer of AGXMM library. There are
in fact two more function layers that have been designed in order to make the use of eXtended Memory
easy.

One of them defines the concept of Pseudo-File, that allow to set up a simple file system; by calling func­
tions with the same sintax of read, wrile, Jeek and lell, one is able to access eXtended Memory as if he was
using standard UNIX streams.

Chapler 3. AGXMM Technical Reference 7

AGXMM Technical Reference InM Internal Use Only

The other one provides a friendly programming interface , introducing the concept of Virtual Arrays. Large
amounts of data, up to 8Mb (by rar greater than the 64Kb limit imposed by MS-DOS), can be organized as
a single array in eXtended Memory and acccssed in a transparent way from any C program.

What follows is a brief description of the library structure of the implemented features in each layer:

I. Basic XMS functions:

Initialization of XMS.

Getting information on XMS status.

• Allocatio n, reallocation and release of an EMB.

Copy of memory areas from conventional to eXtended Memory in any possible way:

eXtended Memory ~~ eXtended Memory

eXtended Memory +---+ Conventional Memory

Con ventional Memory +---+ Conventional Memory

2. Pseudo -Piles support :

Pseudo -Files system initialization .

Opening and closing a Pscudo- File.

• Random access to Pscudo-Pilc5 records.

3. Virtual Arrays support:

Virtual "frays system initialization.

Virtual !\rrays data exchange wit.h disk filmt

Virtual "frays elements access.

Besides these subjects, the library provides functions for error management.

3.2 Basic functions layer

3.2.1 Initializing XMM
To use XMM, the first thing to do is to check if the hardware and the driver are properly set up. This can
be accomplished by calling the function

XMMAcccss() that also prepares the system to access eXtended Memory.

In case of error, the global variable XMMError is set to the Error Code (EC) value . Moreover,
XMMAceessO return s -Ion error, 0 if everything is OK. For more 'information on error handling tech­
niques, refer to the section ahout error management.

Techn ical note 3:

XMMAcces!':() first checks if the XM M driver is installed by ge nerating a proper software interrupt. If the check is successful.
the interrupt routine retu rn!': the e ntry point address of the function that will be called to communicate with XMS . Th is address
is stored in the functio n poi nter

XM M_caIlO·

Every low le vel X 1\1 M function call will cons ist o f:

filling microprocessor registe rs with proper val ues; in ~cnerallhe 1\11 regi ster will be set 10 the XMM function o p. code.

calling X M M _ c;\ll().

get ting re turn values from reg i stcr.~ ; usu all y RC is pu t in regi ste r Bl ,.

8 Use r 's M;,.nu;t l

IBM Intern,,1 Use Only AGXMM Technical Reference

Thc progr:unmcr will never need 10 make use of XMM callO, since highcr level functions tlrc provided by the library,

3.2.2 Getting information
Afier initializing eXtended Memory functions . onc may wish to get several information about the instaUed
XMS.

The library provides some functions that permit to query the eXtended Memory Manager.

XMMVcrsionO returns the version number of the installed eXtended Memory Specification and of
the eXtended Memory Manager along with the status nag of liMA, i.e. if it is available or not. In order to
know available eXtended Memory on the system. one should use

XMMcorcleftO that, having the same syntax of standard DOS eordeftO, tells how many bytes of free
eXtended Memory remain on your Pc. It is important to stress that this memory can be fragmented; the
maximum single block size is obtaioed by

XMMmaxblockO call.

Information on any allocated EXtended Memory nIock (EMU) are given by the function

XMMllandlelnfnO once you have passed to it the identifier of the EMB you are interested in; this
identifier, called handle, is returned upon allocation of the block by the proper function (see below). The
information given by this function concern the size of the chosen EMB, its lock count and the number of
remaining free block handles.

Technical note 4:

The version numbers of XMM and XMS returned by XMMVersionO are in Binary Coded Decimal format (RCD), With this
convention the hex number Ox456 corrc~ponds to dccimal 4,65,

Technical note 5:

The lock count should be 0 in any case with this version of AGXMM In this way an EMR can be freely moved by XMM. To
enable moving, the XM M provides functions (not currently implemented) that set the lock count. This could be useful for
programs that address directly eXtended Memory and use 1\20 line,

3.2.3 Allocating and freeing EXtended Memory Blocks
Three basic functions deal with memory allocation. These are modeled on the standard C functions aUocO,
reallocO and freeO.

XMMAllocO allocates an EMIl taking its size as a parameter and rounding it to the nearest upper
kilobyte. Notice that in this way you cannot allocate less than I Kb of eXtended Memory, unless you wish to
reserve 0 bytes, which is a permitted size; the integer value returned by this function is the EMB handle.

An EM Il can be resized by calling

XMMRcAllncO
rounded.

Finally

XMMI'r~)

XMMFreeO all
new IPt.

Technical note 6:

and passing to it the proper handle. In the same way as above, the new size is I Kb

permits to deallocate the eXtended memory previously reserved. It is very important to
used EM Il before e.iting the application, since otherwise this memory will be lost until a

Ch"pler 3. AGXMM Technical Reference 9

AGXMM Technical Reference IBM Inlernal Use Only

The most interesting feature of eXtended Memory is that it can be allocated whenever an application needs tn do that. It is
then possible to create functions that resemble very much the C language functions that manage memory allocation. For
example, XMMRcAllocO can shift the position of an EMB if its rcsi;>:ing makes it nCCi:ssary.

3.2.4 Data exchange between conventional and eXtended Memory
Perhaps the function that the user will employ more often is

XMMCopyO that transfers memory areas from conventional and eXtended Memory in any possible
way. As a parameter, it accepts a structure that contains all the information about the source and the desti­
nation areas, which arc identified hy their handle. The structure that contains all the required information is
called XMMcopvnLOCK and is defincd in agxmm.h by means of the following typedef declaration:

typedel struct /* Xt~fl memory block control structure */

unsigned long bSlze;
int src_Handle;
union Xflt~off src_ofl;
int dest_Handle;
union Xflfloff dest_ofl;

)
XMMCOPYBLOCK;

/* XflN memo blck size (byte) ; even */
1* Xflfl memory blck source Handle */
/* src affs or conv.mem.addr. if Hnd=O *j
/* XMt~ memory blck destination Handle */
/* dest offs or conv.mem.addr if Hnd=O */

The meaning of each parameters is as follows:

hsizc

src Handle

src ofT

dest Handle

dest off

it :o;pccifies the size of the memory area to he copied; it must be even and, for speed opti­
mization on R03RIi, should be douhle-word aligned;

it specifics the source EMB handle ohtained from a previous XMMAllocO; a zero value for
this parameter specifics that the source area is in conventional memory;

the interpretation of this parameter depends on the value of the previous one; if src_Handle
contains a non zero handle number, src_ofT specifics an ofTset from the first byte of the
corresponding EMB; in the case in which src_Handle is zero, src_ofT is a pointer to the
starting location in conventional memory. To deal with this double meaning in a clean
way, src_ofT is defined by a proper union declaration, XMMoff, in agxmm.h:

union Xt·lI~o I I 1* Xflt~ memo block offset decl. */
{
unsigned long olfset; 1* XMfl block offset */
char *address; 1* conventional memory address */

} ;

it specifics the destination EMB handle obtained from a previous XMMAllocO; the same
as for src_Handle applics;

analogous to src_ofT declaration.

Analogously to standard C functions of this type, it is not guaranteed that the transfer is successful if the two
areas overlap, unless the source address is less than the destination onc.

3.3 Pseudo-Files

3.3.1 Introduction
In order to store and access data in eXtcnded Memory hy using XMM standard functions, the ordy way is
to copy data buffers to and rrom eXtended and conventional memory_ This is not a flexible procedure: a
possihle way to improve eXtended Memory accessibility is to set up a very simple kind of file system, whose
files arc stored in EMBs and can he opened, written, read and closed. Such files have been called Pseudo­
Files in order to remcmher that Ihey arc not true files, even though the programmer can use functions with
the same syntax and behaviour of the ordinary file acccss ones. These functions constitute the second layer

10 User's Manual

IOM Inlernal Use Only AGXMM Technical Reference

of AGXMM library; resting on the hasic one, they make it possihle to use eXtended Memory as a very fast
hard disk.

3.3.2 Pseudo-Files System initialization
After initializing XMM, by means of a call to XMMAecessO, the first step in using Pseudo· Files is to ini·
tialize the Pseudo· File System (I'FS) hy calling

XMM_fiIcs_initO. The maximum number of Pseudo· Files that can stay open at the same time is
fixed by the global variable XMM_max_fiIcs whose default is set to 10 in the current implementation. To
override this default, a new value can be assigned to this variable before the call to XMM_files_initO. Notice
that this latter function can be called only once in a single program.

3.3.3 Access to Pseudo-Files
P,ach time the programmer needs to access a new Pseudo-Pile he has to open it using the function

XMMOpcnO. which lirst verifics if there arc availahle Pseudo· Files handles and if there is enough
eXtended Memory tn hold the file . It has been decided tn force the user to declare the maximum size of the
Pseudo· File as a parameter of XMMOpenO: in this way, all the requested eXtended Memory can be aUo·
cated by the PI'S via a single call to XMMAlloeO and with no need to use XMMReAllocO function, which
is not implemented hy all XMMs. Duc to this choice, the syntax of XMMOpenO is sligthly difTerent from
the corresponding standard openO function, having onc additional parameter. XMMOpenO returns an
integcr numher that represents the Pseudo· File handle to he used for each access to it.

l11e functions that perform read and write operations over a Pseudo-File are

XMMReadO and

XMMWriteO; they arc used in the same way as ordinary readO and writeO. The same applies to

XMMTellO and

XM IVIS('CkO with respect to tellO and seekO functions that arc used to retrieve and set the logical
pointer position in a file .

Once a Pseudo- Pile is no more needed, it can be closed by means of

XMMClo,;c(). Bc aware that, once a Pseudo· File is closed, all data stored in it arc definitively lost
and the eXtended Memory is released to XMM. The implementation of functions that save and load data
from a standard di sk file and Pseudo· Files (and vice·versa) is left to future developments; up to now, the
user has to take care of these operations.

What follows is a simple example of a program that uses Pseudo Files. It includes system initialization and
Pseudo File open and close procedures . It can he used as a skeleton to develop more complex programs.

Ninclude <stdio.h>
Ninclude <string.h >

Ninclude "agxrrm.h"

voidmain()
{
int PFile_Hand = 0;
char 'string = "XMM Pseudo Files test string";
char *string2 = "

char *fname = "F i lename.PF";
" . ,

Chapter 3. AGXMM Technical Rerercnce f1

AGXMM Technical Reference

Ninclude <stdio.h>
'inc l ude <str ing.h>

Nillc lude "a gxmn.h "

void mllin()
(

lnt PF i Je_HlInd ,. 0:
char "'fnllme ,. "fi lenllme. Pf· ;

/* Tests to see if XHI-l i s i nstal led "/
ifl lXIItIAccess{)) I· NOERROR)
(

J

printf("Unable to Access XI-IS\n ");
"It(1);

r Init pseudofil es ma nagel' */
if(xmt files jnitO !" NOERROR
(- -

J

printf(Xt.fllErrorl\sg(XI·U·IError)) ;
exit(l);

r Opens a pseudofile AI
if((PFlle tl.!lnd ,. XttllOpen(ftuune, 0, 2(50)) ~" - 1)
(-

)

prfntf(XlntErrodtsg(XIIHEr l'or)):
exit(l):

r The array element to be accessed is xlm fchllin(P Fi 1e Hano) */
prlntf("CURRENT PSEUDO FILE STATUS : \Il"): - -
printf(" PF;le nllme - %5\0" , XliII fchainlftPF11e Hand" . name) ;
printf(" ElIB Handle ~d\n·, -

Xmtf('hainftlPFl l e_Hand " ,Halldle):
pri ntf(" Curr. Pos , ' Id\n",

Xt-IH fchainfflPFile Ha nd",offset);
printf(" tnaX PFile size %Id Kbytes\n" , -

XIII·I fchainlllPFile Ha nd~ , bsize);
printf (~ ac t ua l PFile size : % ld\n~ , - -

XllI·1 fc hainffiPFi le Hand~, filesize) ;
pl' i ntf(" PFi Je !node %d\n" ,- -

/* Cl oses t he pseudo file after use */
if (XI·lI lClose (PFi le Hand) ! ,. 0)
(-

J

printf(XIltIEI' rorl·lsg(XW·tError));
.,ltll);

printf("Closed Pseudo File\n ");

XW1_f chainltlPFi le_Ha nd ", fl ags) ;

.,It (0);

3.4 Virtual Arrays

3.4.1 Introduction

IIlM Internal U,e Only

The aim we had in proposing the use of Virtual Arrays was to overcome the well known limit of 64Kb
arrays for C programmers under DOS operating system ; at the same time, Virtual Arrays provide a simple
way to use the eXtended Memory for storing data.

The idea here implemented comes from a paper by M.Tichenor [2] who describes a similar system that uses
disk space to store Virtual Array c1ements. With the aid of this technique, onc can manage large arrays of
data and access them by simple reference using , predefined alias and an array index. The system array
manager provides an automatic p;lging memory mechanism that is completc1y transparent to the user.

14 Ul'icr's MmlUal

IIlM Internal Use Only AGXMM Technical Reference

Furthermore wc think that programs that have been designed without using Virtual Arrays could be modi­
fied quite easily in order to take advantage of this technique.

3.4.2 Initializing the Virtual Arrays manager
Since the Virtual Arrays System rests upon eXtended Memory and Pseudo Files System, it is first of all
necessary to initialize XMM and Pr'S via subsequent calls to XMMAccessO and XMM_files_initO.

3.4.3 Creating Virtual Arrays
The procedure to employ Virtual Arrays can be logically divided into two steps that have to occur in the
following order in a user program:

I. the definition of the access macros used to emulate standard array access;

2. the call to the function that actually allocates eXtended Memory necessary for the Virtual array and ini-
tializes the related control structures.

#deflne statements arc used to simplify access notations both to array elements and to complex fields within
them, such as structure elements. Onc #deflne is required for each Virtual Arrays used. For the sake of
clarity it is perhaps better to begin with the description of the second step letting the first one to the next
section. There arc three functions that permit the creation of Virtual Arrays according to different needs that
the user may have. They arc

XMMCreate_v _arrayO,

XMMlnit_v_arrayO,
Pseudo File and

XMMI.oad_v_arrayO
Virtual Array.

that creates a Virtual Array and makes it available for use,

that performs the same operations but uses data contained in an existing

that loach a file from disk to eXtended Memory and makes it available as a

Since these functions arc very similar to each other wc will describe only the the first one, which is probably
the most useful (refer to the function reference for a more complete description of aU of them). Since the
Virtual Array is stored in a Pseudo I'ile, the first parameter of XMMCreate_ v _arrayO is the Pseudo File
name that is used to open it. The function calculates also the required size of the Pseudo File on the basis of
the number of elements, given by the parameter einum, and of the elements' size, eisize' Furthermore, the
function initializes Virtual array elements, if needed, to the predefined mask flllchar. To optimize access
performances, the function accepts two additional parameters: the bufTer size and the number of elements per
segment. The Virtual Array manager access array elements via a paging algorithm: a certain number of ele­
ments are stored in a bufTer, placed in conventional memory, whose size is defined by the parameter bsize;
moreover, this buffer is divided into logical segments -that contain a number of consecutive elements of the
virtual array, that is given by the parameter segsize. Each time an element is referenced, the manager checks
if it is already placed in the huner and, if not, loads it from eXtended Memory, swapping a whole segment;
as a consequence, the access of sequential elements takes benefit from large segments, while random access is
faster with smaller segments. The bufTer size, whose upper limit is 64 Kb, depends mainly on the available
amount of conventional memory and does not affect the performances in a sensible way. In order to opti­
mi7.c the use of the buffer memory, b.dzc, segJize and el<;ize should be balanced so that hsize is the nearest
possible to a multiple of the product of Jegsize and eNze. XMMCreate_v_arrayO returns a pointer to the
Virtual Array Control Structure of type

1 As previollsly noticed, the funclion XMMRc;\l1oc is not supported hy all the XMM, so it has been chosen to avoid
iLc; use; as a consequence. the Pseudo File that holds Ihe Virtual Array is of fixed dimension; hy u~ing dynamic size
r~eudo riles virtuill_ arrays of dYllilIllic dimension could he easily implemented.

Chapter 3. AGXMM Technical Reference 15

AGXMM Technical Reference mM Internal U,e Only

XMM V ACS which contains all the relevant information to bc used by access functions . This struc­
ture will be dcscribed later on only in a technical note sincc thc programmer should never usc cxplieitly data
contained in it.

3.4.4 Access notation
The access macros arc defined in terms of # define declarations that involve a call to

XMMFasl_A"crs.<_ v _ .rfaYO that arc the functions that actually retrieve information from eXtended
Memory by using thc Virtual Array Control Structure of type XMM_ VACS.

X MMFast_Access_ v _ arrayO is considerably fastcr than thc first function, but can be used only when all thc
opcrations that the uscr wishcs to pcrform on a Virtual Array (for example loadcd from a disk file) arc of
read only type.

Thcsc fun ctions should not be called directly but only used in macros definitions. l ,ct us suppose, as a first
simple example, that wc need to access the array of integers lligArray: if it was a standard array it would be
sufficient to write a line like this:

BigArray[item] = 5;

In order to perform the same operation with a similar syntax in the case of Virtual Arrays it is necessary to
define the foll owing macro :

Nd efi ne BigArray(i) (*(int *)XfIMAccess_v_array (v_array , i))

After the creation of the Virtual Array any of its elemcnt can be accesscd with a construct like the foUowing
onc

BigArray(item) 5;

Let us now analyzc the macro definition. The access functions return a void pointer to the referenced array
clement. This pointer must be cast 10 the desired type, in this case a pointer to integer. Then the actual array
clement is obtained by taking the content of this pointer; Ihis notation works well both for read and write
operatiom;4.

n = Bi gArray(item); /* read access */

BigArray(item) = 5; /* wr ite access */

XMMAccess_ v _array() requ ires, as the first parameter, the pointer to the Virtual Array Control Structure of
type XMM_ VACS that iden tifies the required Virtual Array. This pointer is set by the call to any of the
creation functions described ahove, that must be performed before any access to the Virtual Array. The
second parameter is plainly the index numher of the searched clement.

4 Pay (lUefltio ll Ihal wrile operaliom me not. permitted when using XM M l'asl_Acccss_ v _ arrayO because of'the partic­
ular way in which cXlended Memory is m;IfI(1ged.

16 User's Mmll",1

I BM Internal Use Only

What follows is an example of the whole procedure:

N;nclude <stdio.h>
#include agxmm.h

/* Access macro definition */
#define BigArray(i) ('(int ')XMMAccess_v_array(v_array, i))

main()
{

XMM VACS 'v_array; /' Virtual Array Control Structure '/
/' pointer declaration '/

long arrsize = 50000;
int i=O, n;

/' desired v_array size */

..... XMM and PFS initializations

/* cre~tes the virtual array setting element size */
/* the size of item structure and setting the */
/* initialization value to i; */
/* returns pointer to XNr~_VflCS structure v_array */

if((v_array = XMtKreate_v_array("PFname", arrsize, sizeof(int),
(char ')&i, 0, 0) == NULL)

pri nlf ("%s\ n", Xt·IMErrort~sg (XMMError));
exit(l);

fore ;=0; i<arrsize; i++)
{
/' access the i-th element assigning a value to it '/
BigArray(i) = i;

/* or retrieving a value from it '/
n = BigArray(i);

other operations

/' end main() */

AGXMM Technical Reference

In a more complex case the user may desire to access arrays of structures and fields within them. lie can use
the following example:

Ninclude <stdio.h>
Ninclude agxmm.h

/**/

/' Array Elements Structure typede! '/
/**/

typede! struct

long v item, v_qty;

Chapter 3. t\GXMM Technical Reference 17

AGXMM Technical Reference

char v_desc[24J;
)
i terns ;

f* Access r~acros defin i tions: sing l e s t ructure */
'define XMftVREC{i) ((items *)XMMAccess_v_array(item_array , i))

fir •.. , .. and various
#define item (i)
#define qty(i)
Idefine desc(i)

mai n ()
(
XM'~ VACS *item_array;
unsigned long i;
; terns fi 11 char;

fields in them
XMM_VREC (i)->v_item
XflM _ VREC{ i) ->v _qty
XMfl_ VREC (i) ->v _ desc

fir single structure prototype initialization
fillchar.v item = -I;
fillchar.v_qty = -I;
strcpy(fillchar.v_desc,

..... XMM and PFS Initia l izat i ons

*f

*f

..... Virtua l Array creation (returns XM'~ VACS pointer) ..•.. ..

fir fi l ls in 50 array items */

fore i=0 1<50; i++)
(
Item(l) 1+1;
qtY(I) 0;
sprintf(desc(i) , "Ilem I %ld", i+ I) ;

)

f* end main() *f

IB M Internal U~e Oory

It is also possible to reference mull idimell sional arrays as shown in the fo llowing c.ample:

Ninclude <stdio.h>
Ninclude agxmm . h

f lr .*.***.* ••• **.* ••• ** ••• ** •••••••• ** ••• */
f' Array Elements Structure typedef *f
f**"**···**··*··*···******··*·*···*······/

typedef struct
(
int rowitem[100J;
)
matrix;

18 User 's Milnual

IBM Internal Use Only

/' Access Macros definitions: get whole column... . '/
*define XMM_VREC(y) ((matrix ')XflMAccess_v_array(item_array, y))

j* and corresponding row
*defi ne mat (x ,y) XflM _ VREC(y) ->rowitem[x 1

main()
(

XMM VACS 'item_array;
unsigned long i;

. XMM and PFS initializations •. ..•

'/

..... Virtual Array creation (returns XMM VACS pointer)

j* fills in a few elements in the matrix '/

fore i=O ; i<50 ; i++) mat(i, i) = i+1;

/' end main() '/

There are a few things to be noticed about this last example:

AGXMM Technical Rererence

I. each row in the matrix if; defined as a single clement in the Virtual Array item;

2. consequently a row cannot be extended beyond a certain limit whose upper value is 64Kb, the 8086
addressing segment size. The actual limit is indeed lower, since it depends on the parameters used for
the creation of the Virtual Array.

3.4.5 Closing Virlual Arrays
When the user no longer needs to reference the c1ements of a Virtual Array he can close it by calling

XMMClose v arrayO This funclion does not actually discard data contained in the Virtual Array but
rather slores them in the related Pseudo File, whose handle is returned, and frees that region in conventional
memory needed for Vi.1ual Array management.

The programmer has to take care of the use of lhe dala now contained in the Pseudo File: he can, for
example, save them on disk, or discard them by simply closing also the Pseudo File.

3.4.6 Cautions
There are a feIV remarks to keep in mind when using Virtual Arrays. Although the access syntax is quite
similar to the standard one, the paging algorithm can generate some col1ateral effects. Since only a small
number of elements is in conventional memory at access time and these e1cments are loaded using a hashing
scheme

there is no warranty that logical consecutive elements are placed in consecutive memory locations in the
huffer;

when accessed, different c1ements with the same hashing key are loaded from eXtended Memory to the
same buffer address.

Chap.er 3. AGXMM Technical Rererence 19

AGXMM Technical Reference IBM Internal Use Only

These two facts lead to some disappointing consequences. For example, pointer autoincrementation does
not IC<ld, in gcncmi, to the next item of the Virtual Array. Moreover, contemporary access to different ele­
ments can cause buffer collision; for example, memory copy functions, such as slrcpy, used to copy data
directly from onc array element to another, are unreliable because the two may occupy the same buffer
locations. In particular

strcpy(StringArray(n), StringArray(m)) ;

will not work if n and m have the same hashing keys. Trouhles can he avoided hy using a temporary string
hufTer as follows:

strcpy(temp_s tring, StringArray(m));
strcpy(StringArray(n), temp_s tring);

On the other hand, statements like

BigArray(n) BigArray(m) + I;

work correctly hecause memory copying is not involved and the compiler calculates the assignment value
hcfore the addresses for the assignment.

The choice of using a hufTcrcd access also forbids the cmploycmcnl of such things as in-memory sort utiJitics
like qJorl

Final1y, take care not. to overrun the end of the array elements when copying data into them since this could
spoi l some data management information.

Technical note R:

The management of Virtual Arrays has required thc implementation of a paging algorithm that transfers areas of eXtended
Memory into conventional memory whenever this is neccss;uy in order to sat isfy user 's requests of referencing an clement in a
Virtual Array. Things have been ::Itranged so that the entire procedure is hidden rrolll the user; this is how the main purpose
or handling in a transparent way very large amounts or data under DOS operating system is attained.

For the sake or completeness, we will now ou tline this algorithm, though it is cleat that normally onc does not have to care
about the operation of memory management.

The algorithm can be thought of as a simple kind of hashing function that associates to any element of a Virtual Array a
location in a bulTer placed in conventional memory. This buffer, that we call datA_huffer and whose dimension hsi1:e can ~ set
by the user, contains the data that have to be transrerred from eX tended Memory in order to permit Virtual Array element
access. It is at the basis of the procedure, along with the index_huffer that contains information about the eXtended Memory
areas present in data huffer; both arc allocated by anyone of the Virtual Array creation functions that futnll all\o other funda­
menIal tasks. Among them, there is the logical ope rati on of dividing the Virtual Array into segments whose size can be chosen
hy the user if he sets the proper parameter segsi1:c when calling such a function. The segmentation of a Virtual Array has a
correspondence in the logical segmentation of the data_ burTer that of course can contain much less segments.

A !'egmcnt represenls the amount of memory which can be transferred back and forth between eXtended and conventional
memory whenever it is necessary. In order to keep track of which segments or the Virtual Array are present in data_buffer at
any given moment, the index_ buffer ;s built as a vector of integers having the following characteristics:

its dimension is equal 10 the lolalnumber of segmenls thal can be contained in the data_buffer

its index identifies the segment numher in data_buffer

each onc of its item.~; contains two kinds of information

1. the segment number in Virtual Array is stored in the first 15 bits

2. the highest bit is employed as a nag in order to indicate if any clement in that segment has been changed by the user

Whcn a new Virtual Array ;s created, it is necessary to open the Pseudo rile that will contain it, to determine the segmentation
in it and the dimension or data_bufTer, to allocate memory rOt the data_buffer and the index_buffer and to initialize
index_buffer and data _ bufTer elements.

20 User's Manual

'DM 'nternal Use Only AGXMM Technical Reference

Once the the Virtual Array segmentation and the data_buffer dimension are given, it is possible to outline how the hashing
transformation works in order to assign a location in conventional memory to the n-th clement of the Virtual Array. All wc
have to do is to compute the following quantities:

to which segment v_se.: of the Virtual Array its n-Ih element belongs;

which will be the offset of the clement in data_buffer. in terms of clement size units;

once the offset j!'i known. which will be the segment d_sc.: in data_buffer into which the n-lh clement will fall.

The second parameter gives the new location of the n-Ih clement in conventional memory, while the first and the last onc
identify which arc the segments that have to be swapped.

An example may beller explain how these values arc evaluated. Let us consider the array element clind of size elsi7.e: its
segment in the Virtual Array is computed by the following expression

v_seg· (int)(elind / segsize);

while its offset in the data_buffer, which is just the hashing key. is given by

b_off· (lnt)(elind '" ((bsize/(elsize"'segsize})"'segsize»;

where all the operations have to be taken in the order given by parentheses, paying attention to the fact that only integer
operations are involved. and the division could cause rounding effects. Finally. the segment number in data_buffer is calculated
as follows

If the n-th clement is referenced by the user, and if its segment is 1I0t already present in data_buffer, v_seg will be placed at
d_seg in conventional memory and the corresponding item of the index_buffer will be updated.

The previous content of the segment d_seg in data_bufrer can be possibly stored back in eXtended Memory, but on ly if some
of its elements have been changed by the user. This condition is actually controlled by the function XMMAccess_v_arrayO but
not by XMMFasl Access v arrayO. which are the functions that implement the memory management and allow Virtual Array
elements rererenc;; furthe-;'~ore , when closing a Virtual Array, X M MClose_ v _ arrayO checks which are the data _ burfer seg­
ments that are to be saved in eXtended Memory. All these functions inspect the status bit of index_buffe r items which is risen
whenever an clcment in the corresponding data_buffer segment has been changed. The mechanism used to set this status bit
works as follows: each time an array element is aecessed, a copy of it is slored in a safe place; at the next access to an array
element (the same as before or any other onc), a comparison is performed between the copy and the current value of the last
acccssed clement; if they arc not equal, this means that a write operation has occurred on that array item and the corre­
sponding segment status bit must be ri~ell. This test is done one access request later than the reference operation that modified
the clement, because clement processing is done on relurn of the XMMAccess_v_arrayO and it is impossible to know in
advance if the program will perform a write or read only access. The only other way would be to save always any acccS5ed
segment each time it must be swapped out of buffer without worrying about modifications. but this would decrease sensibly the
access speed performances.

All the inrormation needed to manage memory swapping in this way is contained in a Virtual Array Control Structure, whose
type is defined as XMM_VACS. which is allocated and properly initialized by anyone of the Virtual Atray creation functions,
such as XM MCreate_ v _ arrayO. ' rhe relilted typedef declaration is as follows:

typedef struct /'" XHIl vlrtu~l array control structure "'/
{
lnt PFi le H~ndle;
uns i gned Tong e 1 mu!;
Int elslze;
Int *index buffer;
ch~r "'d~t~J)ufferi
int dbuf_size;
lnt dseg_size;
lnt hstbel j
ch~r "'taste1;

unsigned long bsize;
unsigned long segsize;

XIIH_VACS;

I'" PseudoFile h~lldle
I'" If of arr~y elements in fi le
/ '" If of bytes p~r element
/ ~ t~ble of d~ta address
/ '" table of d~t~
/ '" , of elements in buffer
I'" fI of segments in buffer
/'" Last ~ccessed element buffer'
I'" Pointer to intCl'n~1 copy of last
/'" ~ccessed el~ent
I'" H~x Dat~ Buffer Size In byte
I'" If of elements per segment

'/
'/
'/
'/
'/
'/
'/
'/
'/
'/
'/
'/

The meaning of each parameter appearing in this definition is summarized in the rollowing list:

I'File _llandle

elnum

elsize

it is the handle or the Pseudo-Pile that contain the Virtual Array;

it specifics the total number of elements in the Virtual Array;

it is the size. in hytes, of each element or the Virtual Array;

D.apler 3. A(,XMM Technical Reference 21

AGXMM Technical Reference IBM Internal Use Only

index _ huffer

data_burrer

dhur_m.e

lasthcl

lastel

hshc

segsizc

it is the address of the buffer that con tains the in formation about the Virtual Array segments that are
placed in conven tional memory at an y ti me;

it is the address of the conven tional me mory buffer that contains Virt ual Ar ray data;

it is the total nu mber of clement s that can be stored in the data_buffer; it is used in order to compute
wh ich wo uld be the offse t of a Virtual Arr ay c leme nt in the data_buffer;

it is the tolal number of segments that can be stored in the data_ buffer;

il is the position in the data_buffer (expressed as an offset) of the last acccsscd clement;

it is the pointe r to the internal copy of the last accesscd clement; it is used to lest if that element has been
changed, and hence to see if it is necess~ry to r ise the status bit.

it is the max imum size of the d~ta_bufTer in bytes;

it is the num ber of Vir tual Array elemen ts that c~n be stored in e~ch segment; it is used to compute to
which segment in d~t ~_bu rre r a Vi rtual Array elemen t will belo ng.

As it has been already stressed, the normal use of this structure does not embrace the direct access to these information, si nce
otherwise the transpa rency of Virtual Array elements referencing wo uld be lost. What is nceded is just to store the pointer to
the X M M_V ACS structure, which is returned by creation fu nctions, and to pass it as a parameter to the access functions when
de ri l1ing the access macros. Refer to the example in order to see ho w this is done .

3.4.7 Error management for Virtual Arrays
The error management is consislent with that of previous layers, whenever this is possible: the global vari·
able XMMFrror is set by every function and can be read to test error condilions. lIowever, there are situ·
ations in which this is not profitable; in particular, during Virtual Array elements access it is not possible to
test XMM Error without loosing the appearance o[using standard arrays. To cope with this difficulty, the
user can defin e his o wn error management function that takes care of communicating error conditions and
messages . The global variable

void (*XMM_ Varr_crror)(inl ErrCodc) is set to NULL by default: this means no error communi·
cation. The user can change the value of this po inter by assigning to it. the ::I clclress of his own error func­
tion; at any time an error occurs while accessing Virtual Arrays, the system will call this function passing to
it, as a parameter, the corresponding error code stored in XMMError. This error code will be processed as
needed, possibly obtaining from the system the corresponding error message string by means of a call to
XMMErrorMsg(XMMI \rror).

What follows is a simple example of this procedure.

Hinclude <stdio. h>
Ninclude agxmm.h

mai nO
{

/* setting po i nter to error fun ction */
XMM Varr_error = MyErrorFunc ;

il (XMMAccess () != 0)
{

}

printf(" Unable to access XMS\n") ;
exit(1);

if (X'1'1_ l i 1 es _ i nit 0 ! = NOE RROR)
{

}

pr int f(" Unable to access X'1S PseudoFiles\n");
ex i t(1);

22 User I s Manua l

IIlM Internal Use Ollly

Virtual Array access

1* end ma in * /

voi d MyErrorFllnc (i nt ErrCode)
(

print!("%s\n", XMMErrorMsg(ErrCode));
exit(J);

AGXMM Technical Reference

Chapter 3. AGXMM Technical Reference 23

AGXMM Technical Reference IBM Internal Use Only

24 User I s M ,HlU:ll

'OM Internal Use Only AGXMM Function Reference

Chapter 4. AGXMM Function Reference

4.1 XMM files init

Name:

X M M _files_in it - Initializes the Pscudo File System

Declaration:

Synop.l;s:

Hinclude "agxmm.h"

i n t Ee;

I)e.~cription:

The fundion sets all the handles of the Pseudo File System to UNUSED; in this way it makes them
available_ This function can be called only once in a single program_ It also sets XMMError.

Return value:

The function returns the error code stored in XMMError.

Example:

lIinclude "agxrrrn.h"

/* Init pseudoliles manager */

if(XftM_liles_init() != NOERROR
(

}

printf(XI-tflErrorl-tsg(XI4MError));
exit(I);

Pseudo Files Operations

Related Funct;on.l:

Chapter 4. AGXMM Function Rcrcrencc 25

AGXM M Function Reference IIlM Internal Use Only

4.2 XMMAccess

Name:

X M MAccess - Initializes and accesses eXtended Memory Manager

f)eclamt;oa:

i nt XI·lt4Access (voi d)

Synop.,;.<:

#include "ag xmm. h"

int RetCode;

RetCode = XMflAccess ();

Description:

The function checks if the hardware and the XMM arc properly set up and also prepares the system to
access eXtended Memory. In case of error, the global variahle XMMError is set to the error code value.

Return value:

The function returns the error code value stored in XMMError (NOERROR if everything is OK).

Example:

The following example sholVS a typical call to XMMAccessO before accessing any other XMM function

lIin clude "agxmm.h ll

if «Xt·1MAccess ()) != NOERROR)
{

)

printf("Unable to Access XMS\n") ;
ex it(!);

Related Funct;ons:

X M M I nstalledO

26 User's Manual

IDM Internal Use Only AGXMM Function Reference

4.3 XMMAccess V array

Name:

X M M Access_ v_array - Accesses a Virtual Array element

Declaration:

void *XMI~Access_v_array(XI,lfl VACS *vacs, unsigned long efind)

Synop"i.<:

#include "agxmm.h"

unsigned long elind; /* index of referenced element */
XI~M VACS vacs; /* Virtual Array control structure */
<desired type> content; 1* store the referenced element '/

content = «desired type> *)XMI~Access_v_array(&vacs, efind);

Description:

This function i1' to be used in the declaration of the macros that arc used to emulate standard array
access, The function accesses a Virtual Array element implementing a paging algorithm that manages
the swapping of memory areas between conventional and eXtended Memory, First of all, the function
checks if the last accessed clement has been changed or not; if yes, it rises the status bit of the corre­
sponding logical segment in the conventional memory buffer allocated by XMMCreate_v_arrayO, Then,
it performs a test to verify if the referenced clement is already loaded in the buffer. In doing this opera­
tion, XMMAccess_ v _arrayO uses the information stored in the Virtual Array Control Structure of type
XMM_ VACS, If the clement is not placed in any segment, the function looks for it in the Virtual Array,
identifies its segment and transfers it entirely in the buffer. In this way a segment already in the buffer is
replaced after checking its status bit: if it is high, the segment is copied back in eXtended Memory before
replacement. The user must lake care of referencing an element that does not exceed the maximum
number of c1ements in the Virtual Array, declared when calling the function XMMCreate_v_arrayO,

Return value:

The function returns NULL on error; the address in the buffer of the accessed element otherwise, The
fundion sets X M M Error,

Example:

Wc report here the simple case of a Virtual Array of integers. Refer to chapter 2 for more complex
examples,

#include <stdio.h>
#incfude agxmm.h

j* Access macro definition *j
#define BigArray(i) ('(int *)XflMAccess_v_array(v_array, i))

main()
{

XMfl VACS 'v_array;

Chapter 4, AGXMM Function Rererence 27

AGXMM Function Reference

lnt ;=0;

..... Xf1t·1 and PFS initializations•

. Virtual Array creati on (returns v_array poi nte r)

/* access the i-th e l emen t assigning a va lu e to it */
BigArray(5) = i;

/* or retrieving a value from it */
i = BigArray(5)

1* end main() */

Related Functhm.!:

XMMFast_i\cccss_ v _arrayO

28 User I s Manual

IIlM Internal Use Only

IBM Internal Use Only AGXMM Function Reference

4.4 XMMAlloc

Name:

XMMAlloc - Allocates XMM memory, rounding up to Kbyte

Declaration:

int XMl1Alloc(unsigned long sizebytes);

Synopsis:

#include "agxmm.h"

unsigned l ong size;
int handle;

/* number of bytes to be allocated '/
/* XMI1 handle number */

handle = XMMAlloc(size);

/)e .<eription:

The function allocates an EXtendcd Mcmory Block (EM B). The eXtended Memory Manager reserves
memory in multiples of K byles, so the function rounds up to the lower number of Kbytes necessary to
store the rcqucsted nllmber of bytes . The prototype rcquires the size in bytes to be functionally equiv­
alent to malloeO. The number of blocks that can be allocated depends on your XMM: for example,
'"MEM .S YS gives by default 32 dilTerent handles, but this parameter can be varied.

Return value:

The function rcturns the EMB handle number or () on error. The function sets XMMError.

T:xample:

The following cxample shows how to allocate a 3Kb EMB, how to get the corresponding handle and
how to manage an error condition:

Ninclude "agxmm ,h"

int Handle;
unsigned long size = 1024'3;

i f((Handle = XMMAlloc(size)) == 0)
{

}

printf("%s\n", Xftl~ErrorMsg(XMI-1Error));
exit(I);

Related Functions:

XMMReA llocO, XMMFreeO

Chapler 4. AGXMM Function Reference 29

AGXMM Function Reference IBM Inlernal Use Only

4.5 XMMClose

Name:

XMMClosc - Closes a Pseudo-File, releasing the related eXtended Memory to the system.

I)eclamtion:

int XMMClose(int Pseudo_File_Handle);

Synopsi .• :

Ninclude "agxmm.h"

int handle;
int EC;

EC = Xf1l1Close(handle);

Description:

/* XI·1M handl e number */

The function closes a previously opened Pseudo-File, by freeing the EMD that contained it and by
setting its handle to UNUSED. User should take care of saving of data stored in the Pseudo-File before
closing it, since ntherwise they arc completely lost. The function sets X MMError.

Return value:

The function returns the error code stored in XMMErrnr.

Example:

'include "agxmm.h"

int PFile_Hand = 0;
char *fname : "Prova";

PSEUDO FILE SYSTEl1 INITIALIZATION

/* Ope ns a pseudofile */

if((PFile_Hand = XflI-10pen(fn ame , a, 2048)) -1)
{

}

pri nt f (XI·111ErrorMsg (Xfll·IError));
exit(1);

READ~;RITE OPERATIONS

/* Closes the pseudo file after use */

if(XflflClose(PFile_Hand) != 0)

30 User's Manual

IBM Internal Use Only AGXMM Function Reference

{

}

pri ntf (XMMErrorMsg (XMMError));
exH(!);

Related Function .• :

XMMOpenO

•

Chapter 4. AGXMM runction Reference 31

AGXMM Function Rererence

4.6 XMMClose V array

Name:

XMMClose_v_array - Closes a Virtual Array storing data in its Pseudo File

Declaration:

int Xf1HClose_v_array(XHM VACS 'vacs);

Synopsi .• :

Ninclude "agxmm.h"

XMM VACS vacs;
int PF_handle;

De .• cription:

/' Virtual Array control structure '/
/' store the relerenced element '/

IDM Internal U.e <>lily

The function performs the following operation. Pirst it checks if the last accessed element has been
changed, finds which segments have heen modified and store them in the Pseudo Pile that contained the
Virtual Array . 'fhen it frees the conven1ional memory buffers and the Virtual Array control structure.
The function returns the Pseudo File handle, so that the user has to take care of its closure, possibly
after some other operations on it.

Return value:

The function returns - I on error; a Pseudo Pile handle otherwise. The func1ion sets XMMError.

Example:

*include "agxmm . h"

XMf4 VACS vacs;
int PF_handle;

/' Virtual Array control structure '/
/' store the relerenced element '/

Virtual Array initialization and creation

Virtual Array operations

/' closes virtual array '/

il((PFile_Handle = Xf1fIClose_v_array(item_array)) -1)
{

pri nt I ("%s\n". XMf·1Errorf4sg (XMf·1Error));
exit(l);

Related Function.t:

32 User I s Manual

IBM Internal Use Only AGXMM Function Reference

4.7 XMMCopy

Name:

X MMCopy - Copies memory areas from eXtended to conventional memory in any possible way

Declaration:

in t XHMCopy (XMI~COPYBLOCK * area in f os) ;

Synop .. i

#include "agxmm.h"

XMMCOPYBLOCK areainlos;
int RetCode;

/* memory areas control structure */
/* Return va 1 ue * /

RetCode = XMMCopy(&areainfos);

Description:

The function copies an area between eXtended Memory and conventional memory in any possible way
depending on the values of the control structure parameters. The structure XMMCOPYBLOCK is
described in detail in the Technical Reference chapter.

Return value:

The function retums the Error Code and sets XMMError.

Example:

The following example shows how to copy a string of characters from conventional to eXtended
Memory 8 bytes after the heginning of the chosen EM B

#include Ilagxrrm.h"

char string!] = "string to be copied';
XI~MCOPYBLOCK test;
1nt Handle;

XflM Initialization and Memory Allocation

1*** Copy from convent i ana 1 memory to X~1M *** /

test.bsize = strlen(string)+l;
test.src_Handle = 0;
test.src_off.address = string;,
test.dest_Handle = Handle;
test.dest_off.oflset = 81;

i I(XMI~Copy(&test) != NOERROR)
{

1* compute block size */
1* source is in conventionai~ mem . */
1* source address in conv. memo */
1* dest. Handle· from XMflAlloc() */
/' EMB olfset Irom its beginning '/

1* XflMCopy () ca 11 and '/
/* Error Management *1

printf(XMMErrorMsg(XMI4Error));
exit(1);

1* XMMCopy () sets XMMError' '/

}

Chapter 4. AGXMM Function Reference 33

AGXMM Function Reference IBM Internal Use Only

j* . OK message if success ful * /
prin tf(" I%S I copied from co ny mem to XMM\n", s t ri ng a);

R elated Function,!:

34 User ' s M;lIlU tl l

lAM Internal Use Only AGXMM Function Reference

4.8 XMMcoreleft

Name:

XMMcoreleft - Calculates how many bytes of free eXtended Memory remain on your PC

Declaration:

unsigned lang XHHcareleft(vaid);

'include "agxmm.h"

unsigned long Freemem;

Freemem = XMMcareleft();

Description:

The function calculates the number of available bytes in eXtended Memory. XMM allows to fragment
and allocate memory any time that is needed; the number returned by this function refers to all unused
eXtended Memory. If memory has been fragmented by previous XMMt\lIocO. XMMRet\lIocO and
XMMFreeO. usually it is not true that a unique EMB of that size can be allocated. The maximum
allowable single block size is given by the related function XMMmaxbloekO.

Return value:

The function returns the size of unused eXtended Memory or 0 if an error occurs or if there is no more
memory . XMMError is set.

Example:

The following example shows how to get information about eXtended Memory left for use:

'include "agxmm.h"

unsigned long memsizej

if((memsize =XMflcareleft()) == 0)
(
pri ntf (' %s\ n', XHHErrarr~sg (XMMErrar)); r Errar management • /
exit(l);

}
printf('Faund %Iu XflJ.l bytes unused\n', memsize);

Related Functions:

X MMmaxbloekO

Ch"!'tcr 4. t\GXMM function Rercrence 35

AGXMM Function 'Reference

4.9 XMMCreate V array

Name:

XMMCreate_v_array - Creates a Virtual Array and makes it available for use

Declaration:

XMM_VACS 'XMMCreate_v_array(char 'PFname, unsigned long elnum,
int elsize , char 'filch, unsigned long bsize, unsigned long segsize)

Synop"i.,:

Nin clude "agxmm.h"

char PFname[12]

unsigned long elnum;
int elsize;
char fi lCh [10]
unsigned long bs;ze;

j* name of the Pseudo File containing */
f' the Vi rtua 1 Array 'f
f' number of elements in Virtua l Array 'f
I' size of elements in bytes 'f

f' filling character for empty V.Array 'f
/* cony. memo buffer size in bytes
f' takes default value if zero

unsigned long segsize ; f' number of elements per segment
f' takes default value if zero

'f
'f
'f
'f
'f XMt~ VACS 'vacs ; f' Virtual Array Control Structu re

vacs = XMMCreate_v_array(PFname, elnum, els;ze, filch, bsize, segs;ze);

Description:

IBM Inleroaf Vs. Only

The function creates a Virtual Array by opening the Pseudo Pile that will contain it and aUocating the
Viltual Array Control Structure. the buffers for data and their addresses and initializing all the elements
to the predefined mask fikh . The name of the Pseudo Pile is used to open it , while clnum and e1sizc are
needed to compute its size. The user can change the parameters that controls the buffer and segmcnt
sizes, bsi7.c and sc~si7.c, in order to improve Virtual Array access performance; setting to zero these vari­
ables wiU cause thc systcm to take default values. bsizc = 10240 band scgsizc = 48 elements. The
pointer to the Virtual Array Control Structure is returned after allocating space for it.

R ctllrn .'nlue:

The function rcturns N lJ 1.1 . on error; the pointer to the Virtual Array Control Structure otherwise.

" .. ample:

Hinclude <s tdio . h>
Hinclude <stdlib.h>

Ninclude "agxlTIll.h"

/********************************/

f' Access Macros 'f
/********************************/

36 User's Manufll

IBM Internal Use Only

Rdefine XMM_VREC(i)
Rdefine item(i)
Rdefine qty(i)
idefine dese(i)

((items ')XMMAeeess_v_array(item_array, i))
XI~fl_ VREC (i) ->v _ item
XflM_ VREC(i) ->v _qty
XI·lr·l_ VREC (i) ->v _ dese

/**/

/' Array Elements Structure typedef 'f
/**/

typedef struct

long v_item, v_qtYi
char v_desc[24J;
)

items;

main()
(
Xr~M VACS 'item_array;
unsigned long i;
int PFile_Handle;
unsigned long arrsize, bs;ze, segsize;
items fillchar;

fillchar.v_item = -1;
fillchar.v_qty = -1;
strcpY(fi ll char. v_desc, "Null _array_i tem ");

X~'M _ Varr _error = ~1yErrorFunc;

i f(XMMAccess() != 0)
(

)

printf("Unable to access XMS\n");
exit(1);

if(XMM_files_init() != NO ERROR)
(

)

printf("Unable to access xr~s PseudoFiles\n");
exit(l);

j* create a virtual array setting element size */
f' the size of item structure and setting the 'f
j* initialization char to space char */

AGXMM Function Reference

if((item_array = Xr,lr,lCreate_v_array("Prova', arrsize, sizeof(items),
(char ')&fillchar, bsize, segsize)) == NULL)

pri nt f('%s\n", XMMErrorMsg(XMMError));
exit(l);

. . , .. Virtual Array operation

Related Functions:

Chapter 4. AGXMM Funclion Rererence 37

AGXMM Function Reference IDM Internal Use Only

38 U~cr's Manual

IBM Internal Use Only AGXMM Function Reference

4.10 XMMErrorMsg

Name:

XMMErrorMsg· Returns the pointer to the proper error message

Declaration:

char 'XMMErrorMsg(int ErrorCode);

Synopsis:

'include "agxmm.h"

char *string;
int EC;

string = Xl1MErrorflsg(EC);

De.tcription:

j* stores pointer to error message */
/' Error Code value • /

The function returns the pointer to the error message identified by its argument. At the moment, error
messages are availahle only in english language.

Return value:

The function returns the pointer to the error rnc.sssagc.

Example:

Refer to the examples for XMMCopyO or XMMeoreleftO that also show
XMMFrrorMsgO·

Related Functions:

simple uses of

Chapler 4. AGXMM function Reference 39

AGXMM Function Reference InM Internal Use Only

Name:

XMMFast Access_v_array - Accesses a Virtual Array clement without checking previous data modifica­
tions

Declaration.'

voi d *XMt~Fas t _ Access _ v_array (XflM VACS *vacs, uns i gned long e I i nd)

Synopsis:

#in c lude "agxmm.h"

unsigned long elind; /* index of referenced element *j
XMt·1 VACS vacs; /* Virtual Array contro l structure *j
<des i red type> content; /* store the referenced element *j

content = «desired type> *)Xt~t.IFast_Access_v_array(&vacs, elind);

DeJcription:

This function is to be used in Ihe declaration of the macros that arc employcd to emulate standard array
access. It has the same syntax of XMMAccess_v_arrayO, but operates with higher speed.
The function does not perform any check on the possible modification of the data loaded in the buffer,

so that the segment swapping takes place without saving the segment that has to be replaced. This
function can be used if no data modification is needed, for example when reading data or displaying
images. A further speed improvement is obtained via direct call to Basic Layer functions. These are the
only difTerences between this and XMMAccess_v_arrayO function. Refer to the documentation on that
for more information.

Return value:

The function rcturns Nlll.l , on error; the address in the buffer of the acccssed clement otherwise. The
function sets XMMError.

I!xample:

Wc report here the simple case (lf a Virtual Array of integers. Refer to chapter 2 for more complex
examples ,

' include <stdio.h>
Hinclude agxmm.h

/* Access macro definition */
Hdefine BigArray(i) (*(int *)Xt·II·IFasl_Access_v_array(v_array, i))

main()
{

XflM VACS *v _array;
i nt ;=0;

..... Xt-IM and PFS in itializations

40 U~cr ' s M;tnual

InM Internal U,e Only AGXMM Function Reference

..... Virtual Array creation (returns v_array pointer)

/* access the i-th element assigning a value to it */
BigArray(5) = i;

/* or retrieving a value from it */
i = BigArray(5)

1* end mainO */

Related Fllnction.!:

X M MAcccss_ v _ arrayO

Chapter 4. AGXMM function Reference 41

AGXMM Function Reference

4.12 XMMFree

Name:

XMMFree - Releases previously allocated XMM memory

Declaration:

int Xt1MFree(int Handle);

Synop.,iI:

Ninclude Ilagxmm.h"

lnt Handle;
int EC;

EC = XflMFree(Handle);

iJeIcription:

/' Xt1t1 handle number
/' stores XMMError va l ue

'/
'/

IBM Inlernal Use Only

The function frees an EXtended Memory Block (EMB) previously allocated by XMMi\lIoc(), which
also returned the handle identifier.

Return value:

The function returns the value 01 XMM!\rror alter setting it.

Example:

The Synopsis paragraph reports the simplest call to XMMFrce()

Related Function.':

XMMi\lIoe(), XMMRei\lIoe()

lAM Internal LJ5C Only AGXMM Function Reference

4.13 XMMHandlelnfo

Name:

XMMllandlelnfo - Gets FMB handles information

Declaration:

int XMMHandlelnfo(int Handle, unsigned long 'blocksize, int 'freehnd,
int 'lockmode)

Synop-<i.v:

#include "agxmm.h H

int Handle;
unsigned long blocksize;
int freehnd;
int lockmode;
int EC;

j* Handle whose infos are needed
/' EMB size in bytes
/' # of remaining free handles
/' # of locks (0 = not locked)

EC = XMI~Handlelnfo(Handle, &blocksize, &freehnd, &lockmode);

Desc"iption:

'/
*/
'/
*/

The function returns in the parameter passed variables the information about the requested EMB
handle, previously allocated by a call to XMMAllocO. "blocksize" is the size of the EMB; "freehnd" is
the number of memory blocks you can still allocate; "lock mode" is the lock count associated to the
EMB: this should he 0 for each practical purpose.

Return value:

Thc function returns the error codc stored in XMMError.

Example:

#include "agxrnm.h"

int Handle;
unsigned long blksize;
int freehnd;
int lockmodei

/* Allocates 3Kb Extended Memory Block '/
if((Handle = Xfll~Alloc(!024*3)) == 0)
{

)

pri nlf("%s\n", XflMErrorflsg (XMMError));
exit(!);

j* Get information about allocated EMB */
if(XI~I·IHandlelnfo(Handle, &blksize, &freehnd, &lockmode) != NOERROR)
(

)

prinlf(' %5\n", XI~I~Errorl~sg(XMMError));
exit(!);

Chapler 4. AGXMM function Reference 43

AGXMM Function Reference

printf("You can st i ll all ocate %d EMB\n",free hnd);

pr i nt f("Size of HIB %d i s %ld bytes \n", Handle, blksize);

llrlntrd Function .• :

XMM;\lIocO

44 User 's M<lnual

IBM Internal Use Only

IDM Internal Use Only AGXMM Function Reference

4.14 XMMlnit V array

Name:

XMMlnit_v_array - Creates a Virtual Array and makes it available for use with data contained in an
existing Pseudo File

Declaration:

XMM_VACS *XI~Mlnit_v_array(int PF_hnd, unsigned long elnum,
int elsize, unsigned long bsize, unsigned long segsize)

Synop .• i

Hinclude "agxmm.h"

int PF_hnd; /* handle of Pseudo File containing
/* data for the Virtual Array

unsigned long elnum; /* number of elemen,ts in Virtual Array
int elsizej /* size of elements in bytes
unsigned long bsize; /* cony. memo buffer size in bytes

/* takes default value if zero
unsigned long segsize; /* number of elements per segment

/* takes default value if zero
XMM VACS *vacs; /* Virtual Array Control Structure

vacs = X~1Mlnit_v_array(PF_hnd, elnum, elsize, bsize, segsize);

Descdption:

*/
*/
*/
*/
*/
*/
*/
*/
*/

The function takes a previously opened Pseudo Pile handle to use it as a Virtual Array. It a\loeates the
Virtual Array Control Structure and the buffers for data and their addresses. The data must have been
init.ialized on the Pseudo File ju.st as if they were array elements, i.c. consecutive elements must be in
sequence in the Pseudo File with the expected size for array elements. The user must take care that the
Pseudo File size is equal or greater than the memory needed to store the declared number of elements.
The user can change the parameters that control the buffer and segment sizes, bsi1.c and segsize, in order
to improve Virtual Array access performance; setting to zero these variables will cause the system to take
default values, bsi1.c = 10240 band scgsizc = 48 clements. The pointer to the Virtual Array Control
Structure is returned after allocating space for it.

Return value:

The function returns NUI,I , on error; the pointer to the Virtual Array Control Structure otherwise.

Example:

#include <stdio.h>
#include <s tdlib.h>

#include "agxmm.h"

Chapter 4. /\GXMM Function Rererence 45

AGXMM Function Reference

/********************************/

f* Access Macros *f
/********************************/

idefine element(i) (*(int *) XfIMAccess_v_array (item_array, i))

mai n ()
(

XMM_VACS *item_array;
int elem[1024J;
int PFile_Hand;

...... XMM and PFS ini t ializations

f* Opens a pseudofi le *f

if((PFi le_Hand = XfI110pen("PFname", 0, 2048)) -1)
(

}

printf(XMMErrorMsg(X11MError));
exit(I);

. Pseud o Fi l e operations

f* take the Pseudo File and use it as a Virtual Array *f
if((item_array = XMMlnit_v_array("Prova", arrsize, sizeof(int), 0, 0))

== NULL)

printf("%s\n ", X1·IMError1.lsg (XflfIError));
exi t(1);

. Virtual Array operations such as

element(10) = elem[10J;

Related Functions:

XMMCreate_v _array(), XMMI .oad_v _array()

46 User I s Manual

IBM Internal Vse Only

IIlM Internal Use Only AGXMM Function Reference

4.15 XMMlnstalled

Name:

XMMlnstalled - Checks if XMM is installed

Declaration:

int XMMlnstalled(void);

Synopsi.f.'

Ni ncl ude "agxlOOI. h"

int RetCode;

RetCode = XMMlnstalled();

De.fcription:

The function tcsls the presence of an eXtended Memory Manager by generating the interrupt Ox2f with
value Ox4300 in register. AX. The interrupt handler returns the value OxRO in AL register ifaXMM is
active. This function is callcd by each AGXMM function before any attempt to use eXtended Mem<lry.

Retllrn I'a/lle:

The function returns 0 if no XMM is active, I otherwise.

Example:

void UserJI-II·l_functlon()

I' First tests if :X I~I~ is installed */
if (!XMMlnstalled())

}

XMMError = NOTINSTALLED;
return(O);

User XI·1I4 funct ion

/* end UserJI-II·l_function() */

Related Functions:

body

Chapter 4. AGXMM Function Rererence 47

AGXMM Function Rererence IBM Internal Use Only

4.16 XMMLoad V array

Name:

XMMI"ad_v_array - I"ad, a file from disk to eXtended Memory and makes it available as a Virtual
Array

f)ecla"arion:

XI~fl_VACS *XMI~Load_v_array(char *fname , unsigned l ong elnum,
int els1ze , unsigned long bsize, unsigned l ong segsize)

Synop.fis:

*incl ude "agxmm.h "

char "" fname ;
un sig ned long elnum;
int elsize;
uns igned long bsize;

uns igned long segsizej

/* name of the di sk f i le to be loaded */
/* number of elements in Virtual Array */
/* size of elements in bytes */
/* cony. mem o buffer size in bytes *j
/* takes default value if zero */
/* number of elements per segment */
/* takes default value if zero */
/* Virtual Array Contro l Structure */

vacs = XMMLoad_v_array(fname , elnum , els i ze , bsize , segs i ze);

Description:

The function create, a Pseudo Pile loading data from a disk file, and then makes it available as a Virtual
Array . It allocates Ihe Virtual Array Control Structure and the buffers for data and their addresses. The
dala must have becn storcd 011 the disk file just a, if they were array elements, i.e. consecutive elements
must he in sequence with the expected size for array elements. The user must take care that the size of
the Virtual Array is equal to that of the disk file . The user can change the parameters th~t control the
buffer and segment sizes, bsi7.C and s('gsi7.c, in order to improve Virtual Array access perfonnance; setting
to 7.ero these variables will cause the system to take default values, bsize = 10240 b and scgsize = 48
elements. The pointer to the Virtual Array Control Structure is returned after allocating space for it.

Retlll"n value:

The function returns NU LL on error; the pointer to the Virtual Array Control Structure otherwise.

Example:

Hinclude <s tdio .h>
Ninclude <stdl ib.h>

Ninclude "agxrrm.h "

/********************************/

/* Access Macros */
/********************************/

48 User '5 Manual

IDM Internal Use Only

#define element(i)

main()
{

Xflfl_VACS'item_array;
int elem[!024);

('(int ')Xflt·'Access_v_array(item_orray, ill

unsigned long arrsize = 1024;

...... XMM and PFS initializations

/' take the disk li le and load it as a Virtual Array '/

AGXMM Function Reference

if((item_array = XftMLoad_v_arraY("fname", arrsize, sizeol(int), 0, 0))
== NULL)

printf("%s\n", Xt·tMErrorflsg(XMHError));
exit (1) ;

..... Virtual Array operations such as

element(IO) = elem[IO);

Refated Functions:

XMMCrcatc_v _arrayO . XMMlnit_v _arrayO

Chapter 4. AGXMM Function Reference 49

AGXMM Function Reference

4.17 MapError

Name:

Map Error - Internally used , calculates values for XMMError variable

Declaration:

static int flapError(int XJ·II~Err);

Synop .. i .• :

' incl ude "agxmm.h"

extern i nt Xfll·IError;
int EC;

XJ~MError = flapError(EC);

1Je.«ription:

(OM Internal Use Only

The funct ion is static into ACiXMM.C module and is not accessible out of it. It is used by some func­
tions to calculate the proper error code to be stored in XMMError global variable.

Retllrn l'(IIlt(~:

The function rcturn~ the error code t.o be stored in XMMErrof.

F.xample:

Related Function .. :

50 User's Manual

IBM Internal Use Only AGXMM Function Reference

4.18 XMMmaxblock

Name:

XMMmaxblock - Calculates the size in bytes of the biggest free single EMB

Declaration:

unsigned long XI~Mmaxblock(void);

Synop.<is:

N;nclude Itagxmm.hll

unsigned long size; f' size of biggest single EMB 'f

size = XftMmaxb lock () ;

/)e.<cription.·

The function computes the size of the biggest single EMB which is still free at the moment of the caU.
The size is expressed in bytes.

Return value:

Thc function rcturns the size in bytes. A. zero value indicates an error or the faet that there is no more
available memory. The function sets XMMError.

Example:

lIinclude Ilagxmm.h"

unsigned long size;

if ((s i ze =XMI·lmaxb lock ()) == 0)
{
pri nt f ("%s\n", XMMErrorMsg (XMMError)); 1* Error management 'f
exit(!) ;

}
printf("Found %Iu bytes for max. free EflB \n", size);

Related Function.<:

X M Mcorelcft 0

Chapter 4. AGXMM Function Rererence 51

AGXMM Function Reference IIlM Inlernal Use Only

4.19 XMMOpen

Name:

XMMOpen Opens a Pseudo File, allocating an EMB of the desired size and setting properly its
control structure XMMBLOCK

Declaration:

1nt XMMOpen (char *name, lnt f l ags, unsigned long size);

Synop.fi.,:

#include "agxmm.h"

unsigned long size;
in! PF_handle;
in! flag;

/* maximum allowed size in byte */
/* Pseudo File handle */
/* mode fl ag * /

PF_handle = XMt40pen("Pseudo name", f l ag, size);

Ik«ription:

This function opens a Pscudo File , once PI'S has hccn initialized. The maximum allowed size must be
passed as a parameter in oruer to allocate only once all the needed eX tended Memory and avoid possible
troubles with XMMs that do not support XMMReAlloc() function . XMMOpen() checks if there are
available handles in PI'S; if yes, it allocates the requested amount of eXtended Memory and sets aU the
parameters in the proper XMMBLOCK control structure. XMMError is also set.

R etllrn value:

The fun ct ion rcturns -Ion error, or the handle identifier of the Pseudo rile otherwise.

Example:

#include "agxmm.hll

in! PFile_Hand = 0;
char *fname = "Prova";

PSEUDO FILE SYSTEt·1 I NITIALIZATION

/* Opens a pseudofile */

if((PFile_Hand = XflflOpen(fname , 0, 2048)) -I)
(

}

printf(XMt4Errort·lsg(XI·tt·IError));
exit(I);

READ/I,tRITE OPERATIONS

52 User's MrtflUal

IOM Internal U!I;C Only

/* Closes the pseudo file after use */

if(XMMClose(PFile_Hand) !" e)
{

)

printf(Xf1MErrorMsg(XMMError));
exit(l);

Rdnted Funct;on,,:

AGXMM Function Reference

Chaple! 4. AGXMM function Rererence 53

AGXMM Function Reference

4.20 XMMRead

Name:

XMMRead - Reads from a Pseudo Hie

Declaration:

in t XMMRead(int PFil e_Handl e, char "buf, uns i gned int len);

Synops;,,:

Ni nc l ude -agxlll1l . h"

unsigned int len ;
int PF_handle ;
char buf[65530];
ln t reading;

I" number of bytes to be read "I
I" Pse udp Fil e hand l e "I

I" buffer in cony. memory "I
I" co ll ect H of byt es read "I

reading = X~lt4Read (PF_handle , buf , l en) ;

DC.fiCri"tion:

IBM Internal Use Only

The runction reads froln a Pseudo File len bytes and puts them in a buffer allocated in conventional
memory, It starts reading from the cu rrent positio n in the Pseudo File; such position can be changed
using the fun ction XMMSeekO. XMMReadO adjusts the parameter len if it exceeds the total real size of
the Pseudo Pile, in such a way as to read from the current position up to the true end of it. The func­
tion updates the current posit ion pointer in the Pseudo Pile and also set.s X M MError. Pay attention to
the fact that the maximum allowed value for the parameter len is 64Kb due to the well known DOS
segmentation limit.

Return ~'llllle:

The fu nction returns - Ion error, 0 upon reaching the true cnd of the Pseudo Hie and the number of
bytes read otherwise.

Example:

Ni nclude Ufl gxmm. h"

i nt PFile_Han d = 0;
char bUffer[65530] ;

PSEUDO FILE SYSTEf.l INI TIALI ZATI ON

Open a Pseudo Fi l e

Hrite operiltions

if(XfU·IRe"d(PFile_fl "nd, buf fer , 65530) == - 1)
(

)

pri nt f(XNMErrort-1sg (Xt·1t·1 Erro r));
exit (l) ;

54 User IS Manu <t l

IOM Internal U~C Only AGXMM Function Reference

-- Close Pseudo File --

Related Functions:

XMMWritcO, XMMTcIlO, XMMScckO

Chapter 4. AGXMM Function Reference SS

AGXMM Function Reference

4.21 XMMReAlloc

Name:

XMMReAlloe - Resi!.es an allocated liMB. rounded up to Kbyte

Oee/aration:

in t X'~'~ReAlloc(in Handle, unsigned long s izebytes);

Synop .• ;'.:

lIinclude "agxlTIll.h"

un signed long size ;
int handle;
i nt ECj

EC = XfIMReAlloc(handle, si ze) ;

f)e .• cription:

f' new size of EMB 'f
f' XfU~ handle number *f

IBM Internal Use Only

The function resizes a previously allocated E,tended Memory Block. As in the case of XMMAlloeO.
the new dimension is rounded up to Kb. If necessary. XMM varies the posi tion of the EMB in order to
resize it. This function is surely implemented by the device driver IIIMIiM .SYS. but other drivers may
not provide it.

Return "lllue:

The function returns the error code stored in XMMError.

Example:

Ninclude "agxmm.h"

int Hand l e ;
un signed long blksize;
int freehnd;
lnt lockmode;

f' Allocates 3Kb Extended Memory Block 'f
if((Handle = XJ.lfIAlloc(1024'3)) == 0)
(

)

printf("%s\n", X'~'·IError'.lsg(X'·U~Error)) ;
exit (i) ;

1* resize previous l y al l oca ted HIS 'f
if(X'·IMReAlloc(Hand l e,1024'S) != NOERROR)
{
1* Not all X'·lfl support this function (e.g. QEMM S.O does not) 'f
i f(XfIJ·IError == UNKFUNCTION)
(
printf("ATTENTION: This XM'~ does not support HIB real l ocation!\n');

)
else

56 User's Manual

IBM Inlernal Use Only AGXMM Function Reference

{

)

prin t f("%s\ n", XNI·IErro rflsg(XMMError));
XI·IMFree (Hand le);
exit(I);

else
{
if(XMMHandlelnfo(Handle, &blksize, &freehnd, &lockmode) != NOERROR)
{

)

pri ntf("%s\n", XMI·1ErrorMsg(XflMError));
XMMFree(Handle);
exH(1) ;

printf("Reallocated 2nd XI~I~ block: Handle = %d \n", Handle);
printf("Infos: s ize = %51uKb, free handles = %3d, lock mode = %3d\n",

blksize , f reehnd, l ockmode);

Related Function .. :

XMMAlloc()

Chapler 4. AGXMM Function Reference 57

AGXMM Function Reference

4.22 XMMSeek

Name:

XMMSeek - Resets the current position pointer in a Pseudo File

J)eclaration:

l ong Xf.1NSeek(in t PFi l e_Handle , l ong offset, int fromwhere);

Synop .• i .. :

Hinclude <stdio.h>
#incl ude nilgxmm , hn

unsigned l ong pas;
int PF_handle;
long offset;

/* stores current position */
/* Pseudo File handle '/
/* offse t to be used '/

pos : Xt·IHSeek(PF_handle , offset , SEEK_SET);

IJe.fc,.ipt;on:

IOM Internal U~e Only

The function changes the current position pointer in a Pseudo ' ;ile. The starting position from which to
compu te the new ofTset can he specified hy means of the followin g macros defined in < stdio.h > :

SEEK SET

SEEK_OJR

SEEK_END

that co rresponds to the beginning of the Pseudo Pile

that means starting from current position

that specifics the cnd of the Pseudo File

The function sets X M M Error.

Return l'n/lIe:

The function returns -Ion error, the new current position otherwise.

Example:

#include <stdio.h>
#include "agxmm . h"

int PF handle: 0;

PSEUDO FILE SYSTW INITIALIZATION

Open a Pseudo File

t'Jri te operat ions

j' Rewinds Pseudo file */

H(XNt.ISeek(PF handle, 0, SEEK_SET) -1)
{

58 User's Manual

IflM Internal Use Ouly AGXMM Function Reference

}

printf(XflMErrorMsg(XfIMError));
exit(l);

-- Read operations --

-- Close Pseudo Fi le - -

Related Functions:

XMMWritcO. XMMTcIl O. XMMRcadO

Chapter 4. AGX MM f unction Reference 59

AGXMM Function Reference

4.23 XMMTell

Name:

XMMTell· Returns the current position in a Pseudo Pile

Decla,.atinn:

long XI~IHell(int PFile handle);

Synop .. i .. :

'include "agxmm.h"

unsigned long pas;
int PF_handle ;

pos = XI·lIH ell (PF handl e);

De.'icription:

/* stores current position */
/* Pseudo File Handle */

!OM Internal Use Only

The function gives the current position in the specified Pseudo File, computing it from its beginning.

Return I'alue:

The function returns ~ I Oil error, the current position otherwise.

lixample:

lIinclude "agxmm.h"

int PF handle = 0;
int PF_pos;

PSEUDO FILE SYSTEI4 INITIALIZATION

Open a Pseudo File

Write operntions

/* Tells position in Pseudo File */

if((PF_pos = XfIIHe ll(PF_handle)) -1)
{

}

pri nt f (Xfll·IErrorHsg (XI11.1Error));
exit(1);

printf("Current Pseudo File position is %ld" ,PF_pos) ;

Rewind and read operations

-- Close Pse udo File --

IIlM Intcrntll U~e Only AGXMM Function Reference

Relflted Function.':

Chapler 4. AGXMM Function Reference 61

AGXMM Function Reference

4.24 XMMWrite

Name:

XMMWrite - Writes in a Pseudo File

Dec/m'ation:

in t XI4f.11'r i te (i nt PFi l e_Hand l e , cha r ' bu f, unsig ned in t l en);

Synop.,;s:

' in cl ude "agxlTITl . h"

unsi gned int len ;
i nt PF_han dle ;
char bu f (65530);
int writ t en ;

/*
f*

/* bu ffer in

f *

number of by t es t o be wri tten *f
Pseudo Fil e handl e *f
cony. memory *j
coll ec t H of bytes written 'f

written = XHI4~lrite(PF_hand l e , buf , le n);

DeJcript;on:

mM Internal U,e Only

The fun ction wriles in a Pseudo File len bytes taking them from a bufTer allocated in conventional
memory . It starts writing from the current position in the Pseudo File; such a position can be changed
using the functio n XMMSeekO . XMMWriteO checks if the parameter len exceeds the total true size of
the Pseudo hIe, signaling an error if it is so , The function updates the current position pointer in the
Pseudo Pile and also sets XMMErroT. Pay attention to the fact that the maximum allowed value for the
parameter len is 64Kb due to the well known DOS segmentation limit.

R etllrn value:

The function returns -Ion error, 0 at cnd of Pseudo File and the numher of bytes written otherwise.

Example.'

Ninc l ude "agxmm .hll

int PFile_Hand = 0;
char buf fer[) = "s tringa" ;

PSEUDO FILE SYS TEI4 IN ITI ALI ZATI ON

- - Open a Pseudo Fi l e --

i f(XHMWrite(PFile_Hand, buffer , strlen(buf fer) -1)
(

}

pri ntf(XHflErrorflsg(XI4t·IEr ror)) ;
ex i t(1);

-- Close Pse"do Fi le --

62 U~cr '!' Manu:-t l

IBM Internal Use Only AGXMM Function Reference

Related Functions:

XMMRcaJO. XMMScck(). XMMTcllO

Chapler 4. AGXMM Function Reference 63

AGXMM Function Reference

4.25 XMMVersion

Name:

XMMVersion - Tells which is the version of XMS, XMM and the statu. of HMA

Declaration:

int Xflt~ Version(int 'XMS_ver, int 'XMM_ver, i nt 'HMA_flag);

Synopsi.!:

'include "agxmm.h"

int Xt~S_ ver;
lnt Xt·It~_ ver;
int Ht~A _fla g;
int EC;

I' Xt·IS vers i on number ' /
I' Xf.lM ve rs i on number '/
/' Ht·IA status fl ag '/

EC = XMt~Version(in t 'Xt·IS_ver , int 'Xflfl_ve r, int 'HtM_fl ag);

/)e.!cription:

IBM Internal Use Only

The function works out Ihe version number of XMS and XMM along with the status nag of HMA. 'Ibe
latler variable is 0 if IIMA is not available, I otherwise. Version numbers arc given in DC D format.

Return Mlue:

The function returns the error code slored in XMMError.

Example:

#inc l ude "agxmrn.h "

int XMS_ver;
int Xf.lM_ver;
int Ht~A_flag;

I' XMS
I' Xt~t·1

/' Ht~A

version number */
ve rsion number
status fl ag

I' query vers i on numbers and HflA fl ag '/

'/
*/

if(XMt·1Version(&Xt·IS_ver, &XI.It·I_ver , &HMA_flag) != NOERROR)
{

}

pri nt f("%s\n ", XMI~ErrorMsg (XMHErro r));
exit (1) ;

printf("eXtended Memory Speci ficotion version %x.%x insta ll ed\n"
eXtended t·1emory r~anager vers; on %x . %x i nsta 11 ed\n"

High I·lemory Area status %x \n\n",
XI~S _ ver» 8, Xt·IS _ ver&OxOO ff • XI·!t·I_ vep>8. Xt~fl_ ver&OxOO ff •
HMA_flag) ;

Related Function.!:

64 User's Manual

lAM Internal Use Only AGXMM Function Reference

Chapler 4. AGXMM Function Rererence 65

AGXMM Function Reference IIlM Inlernal Use Only

66 U!'cr IS Manual

Appendix A. Table of functions per library layer

Function Description
===

BASIC XMM LAYER

XMflAccess ()

XMMA 11 oc ()
XMMCopy ()
XMMcore I eft ()
XMMErrorl-lsg ()
XMMFree ()
XMMHandl e I nfo ()
XfIMlnsta11ed()
MapError()

XMMmaxb lock ()

XMMReA II oc ()
XMMVersion()

PSEUDO FI LES

XMMCI ose ()
XMM_files _init()
XMMOpen ()
XflMRead ()
XMMSeek ()

XflMTe 11 ()
XI~Mi'iri teO

VIRTUAL ARRAYS

XMMAccess_v_array{)
XMMClose_v_array{)
XMMCreate_v_array{)
XfIMFast_Access_ v _ array()
XMMlni t_ v _array()

Initializes and accesses the eXtended Memory
Manager
Allocates XMI1 memory
Copies memory areas to/from eXtended memory
Computes remaining free eXtended memory
Returns the pointer to a proper error message
Releases previously allocated XflM memory
Gets HIB handles information
Checks if XI-Ifl is ins ta II ed
INTERNAL! Calculates values for XMMError
variable
Calculates the size in bytes of the biggest
free EMB
Res i zes an allocated mB
Returns XI1s and XMfl versions and HMA status

Cl ases a Pseudo Fi 1 e, re 1 eas i n9 eXtended t4emory
Initializes the Pseudo Files System
Opens a Pseudo File of given size
Reads data from a Pseudo File
Sets the current position pOinter in a
Pseudo Fi I e
Returns the current position in a Pseudo File
i'ir i tes data in a Pseudo Fi I e

Accesses a Virtual Array element
Closes a Virtual Array
Creates a Virtual Array
Accesses a Virtual Array element (fast read)
Creates a Virtual Array using data in
an existing Pseudo File
Loads a file from disk and makes it available
as a Virtual Array

Appendix 1\. Table of functions per library layer 67

IBM Internal Use Only

68 User's Manual

IDM Internal Use Only

Appendix B. Example Programs Source Files

B.1 AGXMMTST.C - general test program.
1*** ************************

* Module: Sources AGL[B.L[B - > AGXMMTST.C
*
* Use: XHM memory management test program.
*
* Alessandro Bondi Gianluca Chiozzi
*
* Date: 20/07/90 Last Rev. :08/10/90
*
*** *** *********1

#in cl ude <s tdio.h>
#include <conio.h>
#include <process.h>
lIinclude <s tring.h>

#include "agxmm.h"

1*****************1

1* l~ain function */
1*****************1

voidmain()
{

int Handlel, Handle2, freehnd, lockmode;
unsigned long blksize;
int XMS_ver, Xfll·l_ver, HMA_flag;
unsigned long memsize;
Xt-IflCOPYBLOCK tes t ;
char *string "Xt~~1 Allocation and Copy test string";
char *string2 - " " . ,

printf("\n\n***\nM) ;
printf(,,* *\n");
printf(,,* Test for Xl·lfl aglib functions *\n");
pri ntf("* *\n");
printf(,,* *\n");
printf("* A.Bondi - G. Chiozzi *\n");
printf("* Centra Ricerca Milano - [BM Semea SrI *\n");
printf(,, * 25 Luglio 1990 *\n");
printf(M***\n\n");
pri ntf(-- IBM Internal Use Only --\n") ;

1************************************1

/* Tests to see if XI·It·1 is installed */
1************************************1

if ((XflfIAccess ()) ! = NOERROR)
{
printf("Unable to Access XMS\n");

Appendix n. Example Programs Source Files 69

exi t(l);
}

I-**·*AAAAA** ___ *_** •• __ •• _.**** __ .*_/
1* Gets XflH ve rs ion * /
1*··-*·_·_-**_········_*_···· __ ······/

if(XMMVersion(&XMS_ver, &XMI~_ver , &HMA_fla g) != NO ERROR)
{

}

printf("%s\n", XMflErrorl·lsg(XHHError));
exit(l);

printf("eXtended Memory Specification version %x.%x insta11ed\n"
eXtended ~1emory t·1anager version %x.%x installed\n"

High Memory Area status %x \n\n",
XflS _ ver»8, XMS _ ver&OxOO If ,XI·1M_ ver»8 , XMI~_ ver&OxOO If ,
HI.1A_flag) ;

1-·**···**--*-*·_-**-****·*-***--*·-*/
/* Gets XMM free mem '/
I_AftA*AAA*A __ *_.* __ * __ * ___ • __ * __ ** ___ /

if((memsize =XMf1coreleft()) == 0)
{

}

printf("%s\n ", XI·lI·IErrorl~sg(XI'lI~Error));
exit(l);

/* Tota l free mem */

printf("Found %lu Xfll·l hytes unused\n", memsize) ; /* Max free block '/

if ((mems i ze =Xflflmaxb lock ()) == 0)
{

}

pri ntf ("%s\n", XI·1MErrorflsg(XMI~Error));

exit(l);

printf(IIFound %lu bytes for max free block size\n", memsize);

1-·--·-_·--*-_·_·_--*****_·-·_*--·------*----_·_--/
1* Allocates 2 XI~fl memory blocks * /
1*·w.ft •• *AA*--*-*-*-*--*---*._--*---***-----**---*/
if((Handlel = Xfll~A11oc(1024'3)) == 0)
{

}

printf("%s\n", XI·lf.1Errorl·lsg(Xfll.1Error));
exit(l) ;

if(XflMHand l eInfo(Handlel, &blksize, &freehnd, &lockmode) != NoERRoR)
{

}

printf("%s\n", XMf.1ErrorMsg(XMMError)) ;
XMMFree(Handle1);
exit(1);

printf("A11ocated 1st XI·IM block: Hand l e = %d \n ", Handlel);
printf(" Infos: size = %51uKb , free handles = %3d , l ock mode %3d\n",

70 U~cr IS Manual

IIJM Internal Use Only

IBM Internal Use Only

blkslze, freehnd, lockmode);

/* Allocates Handle2 for a 2Kb block */
if((Handle2 = XMMAlloc(ID24*2)) == 0)
{

}

pri ntf("%s\n", XI~I·IErrorMsg (XI·II~Error));

XMMFree(Handlel);
exit(I);

if(X~IMHandleInfo(Handle2, &blksize, &freehnd, &lockmode) ,= NO ERROR)
{

}

printf("%s\n ", XfIMErrorl~sg(XfIMError));
XMMFree(Handlel);
XMMFree(Handle2);
exit(I);

printf("Allocated 2nd XW~ block: Handle = %d \n", Handle2);
printf(" Infos: size = %51uKb, free handles = ?dd, lock mode %3d\n",

blksize, freehnd, lockmode);

/***/

/* Reallocates 2nd block for a 3kb size from 2Kb */
/***/

if(XMI'IReAlloc(Handle2,1024*3) != NOERROR)
{
1* Not all XMM support this function (for example QEI~M 5.0 does not) */
i f (X~IMError == UNKFUNCTION)
{
printf("\n\nATTENTION: This Xfll~ does not support EMS reallocation!\n\n");

)
else

{

}

pri nt f("%s\n ", XI·ll·IErrorMsg (XI~I~Error));
X~II'IFree(Handlel) ;
X~IMFree (Hand 1 e2) ;
exit(1);

else
{
if(X~lfIHandleInfo(Handle2, &blksize, &freehnd, &lockmode) != NOERROR)
{

}

pri nt f ("%5\" ", XI~MErrorl'lsg(XI.IMError));
XMMFree(Handlel);
Xfll~Free (Handl e2) ;
exit(I);

printf("Reallocated 2nd XI·lfl block: Handle = %d \n", Handle2);
printf(" Infos: size = %5luKb , free handles = %3d, lock mode %3d\n",

b 1 ks i ze, freehnd, lockmode);

/**/

/* Test for XI~M copy functions */

Appendix H. Example Programs Source Fites 71

/** ****** /

printf("Xflfl copy test:\n");

/*** Copy from conven tional memory to conventional memory ***/

test.bsize = strlen(string)+l;
test.src_Hand le = 0; /* 0 to use conventional memory */
test.src_of f. address = string;
test.dest_Hand le = 0;
test.dest off. address = string2;

i f(XMMCopy(&test) ! = NOERROR)
(
pri nt f("%s\n", XJ.II~ErrorMsg(XI·IMError));
XMflFree (Hand 1 e 1) ;
XMMFree(Handle2);
exit(l);

)
pr intf{" I %S I copied from con v mem to cony mem\n ", string2);

/*** Copy from conventional memory to XMt~ ***/

test.bs ize = strlen(string)+l ;
test.src_Handle = 0;
test.src_o ff.address = string ;
test.dest_Handle = Hand le!;
test.dest_off.o ff set = 01;

i f(XM~ICopy(&test) ! = NO ERROR
{

/* 0 to use conventional memory

pri ntf (XMMError!·lsg (XI~I·IError));

XMMFree(Handlel);
XflMFree (Hand I e2) ;
exit(l);

}
printf(" '%s' copied from con v mem to XI-II-I\n" , string);

/*** Copy from XI·U·I to XI~I-I **' /

test.bsi.e = strlen(string)+!;
test . src_Handle :::: Handle1;
test.src_off.address = 01 ;
test.dest_Handle = Handle2;
test.des t _off.offset = 01;

i f(XI~MCopy(&test) ! = NOERROR)
(

)

printf(XI·II·IErrorl·lsg(XI·IMError));
XMMF"ee (Hand I e 1);
XI·U·IFree (Handl e2);
exit(1);

printf(" '%s' copied from XMM to XMI~\n" ,s tring);

/*** Copy from Xt·1N memory to convent ional memory ***/

test.bsi.e = strlen(string)+l ;
test. src_Handle = Handle2;

72 U,er', Manual

'/

IBM Internal U,e Only

IBM Internal U~e Only

test.src_off.offset = 01;
test.dest_Handle = 0;
test .dest_off.address = string;

i f(XflHCopy(&test) ! = NOERROR)
{

)

pri nt f (Xl4flErrorflsg (XMI~Error));
XMMFree(Handlel);
XMflFree (Hand I e2);
exH(I) ;

printf(" '%s' copied from Xfll~ to conv mem\n",string);

/***/

/* Test for PseudoFile funes (dusty) */
1**-----*-*--*-_·**-_·***-**·_--**·*-*-**---*-**-_·_/

int PFile_Hand = 0;
char *fname = "f;lename.PF"j

printf("\n\nXMM Pseudo Files Test\n");

/* Init pseudofiles manager */

if(XflM files init() != NOERROR)
{ - -

)

pri ntf (Xfll·IErrorl·lsg (XI4I·1Error));
XflMFrpp(Hanrllel) ;
Xfll·1Free (Handl e2) ;
exi t(1);

/* Opens a pseudofile */

if((PFile_Hand = XI4I·lOpen(fname, 0, 2048)) -I)
{

)

pri n tf (XI~MErrorflsg (XflMError));
XMMFree(Handlel);
XI~fIFree(Handle2) ;
exit(I);

printf("Opened Pseudo File %s (PFile_Handle %d)\n" ,fname,PFile_Hand);

/* Writes string on Pseudo File */

if(XI·II~Write(PFile_Hand,string, strlen(string)+I) -I)
{

)

pri ntf (Xt-Il~Errorl4sg (XI-1I~Error));

XHflF ree (Hand I e I) ;
Xfll·1Free (Hand I e2) ;
exit(I);

printf("\~ritten string: current position is %ld \n" , XfIMTell(PFile_Hand));

1* Rewinds Pseudo file and reads string again */

Appendix B. Example Program!> Source riles 73

if(Xflf.1Seek(PFile_Hond , 0, SEEK_SET) -1)
(

}

printf(XHMErrorflsg(XflMError));
XI·lf.1Free(Handlel) ;
XMf.lFree(Handle2);
exit(l);

strcpy(string2,"teststr") ;
if(XI~MRead(PFile_Hand, string2 , strlen(string)+l) -1)
{

}

pri ntf (XHflErrorMsg (XMI~Error));
XMflFree(Handlel) ;
XI·1MFree (Hand 1 e2);
exit (I) ;

printf("The read string is: %s \n', string2) ;

f* Closes the pseudo file after use *f

if(XMflClose(PFile_Hand) !. °)
(

}

printf(XMI·1Erro,'Msg(XI~I~Error));

XMMFree(Handlel);
XMI~Free (Hand 1 e2) ;
exit(1);

printf("Closed Pseudo File\n ');

} f* end test for pseudo files *f

/************************************/

f* Gets XI·1M free mem * f
/************************************/

XflMF ree (Handl e I) ;
XMMFree(Handle2);

printf("Releasing Xf.1M bl ocks\n ");
if((memsize .XHI·lcoreleft()) •• 0)
(

}

printf{ XflMErrorMsg{ XI~MError));

exit(l);

f* Release memory block *f

printf(' now %lu Xfll~ bytes unused\n ", memsize);

exit (0);

} f* end main() *f

74 User IS M;mual

IOM Internal Ul'Ie Only

IBM Internal Use Only

Appendix 11. Example Programs Source files 75

B.2 AGXMFTST.C - Pseudo File use example program
J***.******.*.*.******** •• ************** ****-********* ************************

* Module: Sources AGLIB.LIB - > AGXI·1FTST.C
*
* Use: X~lM Pseudo Fi l e mr\n{lgement test program.
*
* Alessandro Bond; ,
* Date: 23/10/90
*

Gia nluca Chiozzi

Last Rev. :23/10/90

**************************** ******* ** **** ******** ** **************************/

Ninc lude <s tdio . h>
#include <conio.h>
Hinclude <process . h>
Hin clude <s tring.h>

#include "agxlllTl.h"

J***** **** ********/

1* fla in function' /
f***********-*****/

void ma i nO
{
int PFile_Hand = 0;
char ·string = MX,,1t~ Pseudo Files test string "j
char *string2 = "

char ·fname :::: "Filename.PF";
" . •

printf("\n\n*** **\nh);

printf('" *\n");
printf("* Test for XMI~ PseudoFiles fU nctions *\n");
pr i ntf(,,* *\n");
printf("' *\n ");
printf(,,' A.Bondi - G. Ch i ozz i *\n");
printf(," Centro Ricerca Milano - IBM Semea SrI *\n");
printf("' 25 LU91 io 1990 *\n");
printf("***\n\n");

printf(-- IBM Interna l Use Only --\n");

j************************************j

1* Tests to see if XMM is installed */
j************************************/

if((XMMAccess()) ! - NOERROR)
{

}

printf("Unable to Access XI·IS\n");
exit(l);

/** ****/

/' Test for PseudoFi l e funcs */
/**j

76 User's Manual

mM Internal Use Only

IBM Internal Use Only

/* lnit pseudofiles manager */

if I XMM_files_init() != NOERROR
(

)

pri ntf (XMflErrorMsg I Xr·1MError));
exH(1);

/* Opens a pseudofile */

if((PFi le_Hand = XflflOpen(fname, 0, 2050)) -I)
{

)

printf(XflMErrorMsg(XflMError));
exit(I);

printf("Opened Pseudo File %5 (PFile_Handle %d)\n',fname,PFile_Hand);

/* Writes string on Pseudo File */

printf("String to be written on file: %s\n",string);

if(XflMWrHeIPFile_Hand,string, strlen(string)+I) -I)
{

)

printf(XMMErrortjsgl Xr·ltjError));
exi t(1);

printf("Written string: current position is %ld \n", XMMTel1 (PFile_Hand));

j* Rewinds Pseudo file and reads string again *j

if(XMMSeek(PFile_Hand, 0, SEEK_SET) -I)
{

)

pri ntf (XMtjErrorflsg I XflMError));
exit(I);

/* Reads string from file and puts it on a new buffer */

if I XrjMReadIPFile_Hand,string2, strlen(string)+I) == -I)
{

)

pri ntf I XrjMErrorMsg (Xf.1r'lError));
exit(I) ;

printf("The read string is: %5 \n", string2);

j**j

/* Access file information on Xflt·l_fchain data structure */
j*** ***/

1* The array element to be accessed is XrjM_fchain(PFile_Hand) */

printf("CURRENT PSEUDOJILE STATUS:\n");
printf(" PFile name %s\n", Xr,lfl_fc hainffiPFile_Hand".name);
printf(" EMS Handle %d\n", Xr4r4_fchainffiPFile_Hand".Handle);
printf(" Curr. Pos. %ld\n', Xr·lt·l_ fchainffiPFile_Hand".offset);

Appendix fl. Example Programs Source Piles 77

printf(" max PFile size %Id Kbytes\n",
Xflfl_ fchainffiPFi le_Hand" .bsize) ;

printf(" actual PFile size: %Id\n",
Xfll·l_ fchai nffiPF i I e_ Hand". fi I es i ze);

printf(" PFile mode %d\n ", XMM fchainffiPFile_Hand" . f1ag s);

/* Clos es the pseudo file after use */

if(XflMClose(PFile_Hand) 1= 0)
{

)

printf(XflMErrorr·lsg(XMflError)) ;
exil(l);

printf("Closed Pseudo File\n");

ex i t(O);

) /* end main() */

78 User 's M<lllual

IBM Inlernal Use Only

IIlM Inlernal U,e Only

B.3 AGXMVTST.C - Virtual Arrays use example program
j***kk**k*.*_****_****_.****************.*********************** **k**** __ ** __ _

* Module: AGLIB -> AGXMVTST.C
*
* Use: Test Program for XMM Virtual Arrays Functions
*
* Command Line
*
*

agxmvtst fflarray size
of els.

fflprintout step fflbuf.size
byte

* Author: Alessandro Bondi - Gianluca Chiozzi
*
* Date: 25/07/90 Last Rev. : 28/08/90
*

ffiseg.slze""""
of els.

*k**k**********_****_**************_*_**_*****_***********kkk******_*********/

#include <stdio.h>
#include <stdl ib.h>
#include <string.h>
#include <time.h>
#include <io.h>

#include "agxmm.h"

unsigned stklen 0xffff ;

j*kk****k* __ ******._*******_*****/

1* Access f.la cros * /
Itt*****k*--**-*-**-*-*****-***--/

#define XMM_VREC(i)
#define item(i)
Ndefi ne qty(i)
#define desc(i)

«items *)XI~MAccess_v_array(item_array. i))
XfIM_ VREC (i) ->v _ item
XflM _ VREC(i) ->v _qty
XI~t·'_ VREC(i) ->v _desc

jt**k**.*****************.*********_*****/

/* Array Elements Structure typedef */
I**t*********-**-**********-*****-*--**-*/

typedef struct

long v ltem, v_qty;
char v_descffl24 ";

items;

/**/

/* Local function prototypes */
/**/

void MyErrorFunc(int ErrCode);

#ifdef IBMC2
void randomize(void) ;

#endif

"ppendix n. Example Programs Source file!; 79

/**/

/* Start Main Program */
/**/

main(int argc, char *argvffl")
{
Int step = 50;
XM~I VACS *item_array;
unsigned long i;
Int PFIle_Handle;
unsigned long arrsize, bsize, segsize;
long temp;
items fillchar;
clock_t tl,t2, empty_t, full_t;
FILE *flog;

/* timing variab l es */
/* measurements file */

ldlv_t Hemp;

flllchar.v Item = -1;
flllchar . v_qty = -1;
strcpy(flllchar.v_desc, "Null _arraLI tem "J;

I f(argc == 1)
arrslze 1000;

else
arrsl ze atol (argvffil");

I f(argc >= 3)
step = atol (argvffi2");

If(argc
bsize

else
bsize

>= 4)
atol (argvffi3");

0· ,

I f(argc >= 5)
segslze atol(argvffi4");

else
segsize 0;

/* Max Data Buffer Size In byte

/* # of elements per segment

If (access("XMVARTSLTHI", 0) !=0)
{

fl og= fopen (" XIWARTST. T If!" , "w") ;

*/

*/

fprintf(flog,"\n\n***\n");

fpr l ntf(flog, "* *\n");
fprintf(flog, ,,* Test for Xfll·1 virtual arrays functions *\n");
fprintf(flog, "* *\n");
fprlntf(flog, ,,* A.Bondi - G. Chiozzl *\n");
fprlntf(flog, ,,* Centro Ri cerca ~Iilano - IBI~ Semea Sri *\n");
fprlntf(flog, ,,* 25 Luglio 1990 *\n');
fprintf(flog, "***\n\n");

fprlntf(flog, -- IBM Internal Use Only --\n");

fprintf(flog, "\n\n Total Size (Kb) I Buffer Size (Kb) I "
"Segment Size(b) 1·lean Access Rate(b/sec)\n\n\n");

else
fl og fopen("XMVARTST.TIM","a");

80 User I s MantlRl

mM fnternat Use Only

(OM Internal Use Only

printf("\n\n**.**·.*****·**************·***-*******-***\nn);
printf('* *\n");
printf(,,* Test for X'~'~ virt ual arrays functions *\n');
printf(,,* *\n');
printf("* A.Bondi - G. Chiozzi *\n');
printf(,,* Centro Rieerea Milano - IBM Semea Srl *\n");
printf("* 25 Luglio 1990 *\n");
printf("******-********************·*****-*****-***\n\n");

printf(" -- IB~\ Internal Use Only --\n');

printf("Testing for an array of %lu elements %d bytes long\n\n",
arrsize, sizeof(items));

printf(" Command li ne : \n"
agxmvtst ffiarray size

of els.
ffiprintout step fflbuf.size ffiseg.size""""\n"

XMM Varr error ~\yErrorFune;

if(XMMAccess() != 0)
(

}

printf("Unable to access XMS\n");
exit(l) ;

if(X'.\M_files_init() != NOERROR)
(
printf("Unable to access XMS PseudoFiles\n");
exit(1) ;

}
(*
/*
/*

create a virtual array setting element
the size of item structure and setting
initialization char to space char

size *1
the *(

*(

byte H of els.\n");

if((item_array ~ XMt~Create_v_array("Prova", arrs;ze, sizeof(items),
(char *)&fillehar, bsize, segsize)) == NULL)

printf("%s\n ", X'~MErrorMsg(X~U~Error));
exit(I);

bsize
segsize

item_array->bsize;
item_array->segsize;

(* fills in arrsize array items and watch time *(

for(;=0 i<arrsize; i++)
(
i tem(i) i+l;
qty(i) 0;
sprintf(dese(i), "item # %ld", i+l);

}

(* prints content of filled items *(

fort i=O ; i<arrsize i+= step)
{
printf("Element # %ld Item = %ld Qty %ld Desc %s %d\n",

Appendb:: n. Example Programs Source Files 81

i, item(i), qty(i) , desc(i) , (int)desc(i)ffi23");

/*
Sequential Access Test Loop

'/

printf("\;AIT! Testing Sequential Access Performances\n');

tl : clock() ; /' Empty Seq uential Acces l oop
fore i =8 ; ; <arrsize i ++)

temp = i;
t2 : clock ();
empty_t : t2 - tl;

t1 : cl ock(); /' True Sequential Acces loop
fore i =O ; i<arrslze i++}

temp: item(i);
t2 : clock ();
full _t : t2 - t l ;

printf("Sequentia l Access Rate: %12 .3f by tes/sec\n' ,
(CLK_TCK'arrsize' sizeof (items))/(fu ll _t-empty_t+0 .00001)) ;

fpr in tf(flog ," %41u I %41u

/'

'/

%41u I Seq %H12.3f \n\n",
arrsize'sizeof(items)/1024 , bsize/1024 ,
segsize*sizeof(items) ,
(CLK_TCK'arrsize'sizeo f(i tems))/(full _t -empty_t+0.00001));

Random Access Test Loop

pri nt f("\'IAIT! Testing Random Access Performances\n H
) ;

'/

'/

randomi ze () ; j* Initialize random * generator */

t1 : cl ock(); /' Empty reference loop
fore ;=0 ; i <arrsize ; i++)
1 temp : ldiv(((unsigned long)rand() , rand()) , arrsize) ;

t2 : clock() ;
empty_t : t2 - tl ;

t1 : clock() ; /' True Random Access Loop
fore ;=0 ; ;<arrsize ; i++)
(
ltemp: ld i v(((unsigned long)rand() , rand()) , arrsize);
temp : item(ltemp . rem) ;

)
t2 : clock() ;
full t : t2 - tl;

pri nt f("Random Access Rate: %12.3f bytes/sec\n ',
(CLK_TCK'arrsize'sizeof(items))/(fu11 _t-empty_t+0 .0000 1));

fprintf(flog," I "

82 U~cr ' ~ Manual

'/

'/

IBM Inlernal Use Only

IBM InLernal U~C Only

I Ran %NI2.Jf \n\n',
(CLK_TCK*arrsize*sizeof(items))/(full _t-empty_t+O.OOOOI));

fclose(flog) ;

/* closes virtual array */

if((PFile_Handle = Xfll-1Close_v_array(item_array)) -I)
(

pri nt f("%s\n" , X/·1MErrorMsg(X/·1MError));
exit(I);

if(X/·l/·1Close(PFile_Handle) ,= NOERROR)
(

printf("%s\n", X/·1MError/·lsg(XI·1MError));
exit(I);

return(O);

/* end main '/

void MyErrorFunc(int ErrCode)
(

printf("%s\n' , XMMErrorMsg(ErrCode));
exit(1);

Ni fdef IBflC2

/*** *********************************

'Function: void randomize(void)
*
* Use: For IBMC 2 (it is a standard TURBOC function): seeds the
* random number generator to a random value (uses time() so
* time.h must be included)
*
* Arguments: ,
* Returns:
*
* Date: 28/08/90 , Last rev:

**/

void randomize(void)

time t now;

srand((unsigned int)time(&now));

) /* end randomize */

Appcn.dix n. Example Programs Source Files 83

I AM Intcrnal Use Onry

Hen di f

84 U!;cr '!; Manllal

TOM Intern,,1 U~e Only

Appendix C. Bibliography

[IJ Ray Dunc.n - MS-I)()" f!xtenJions, 1989, Microsoft Press

[2J Mark Tichcnor - Virtl/al Arrays in C, May 1988, Dr Dobb's Journal

Appendix C. Ilibliography 85

