X

1BM Object- Oncntcd chhnolqu Center and Boblmgcn Development Lab
invites to the

3rd European Symposium on Object-Oriented Spftware Development
Boblingen, Germany, October 12 - October 15, 1992

i
The focus of the Symposium will be the introduction of object-onentation i into softwarc development at the

IBM luboratonces in Europe.

Conference Themes

Papers submitted to the conference shall describe practical expenences w1th the introduction and usage of
object-onented techniques and can be tn any arca of object-orentation:

- Site reports

« Expericnee Reports
Topics: Anulysis, Design, Propramming, Languages, Graphical User lnterfaccs, Databases, Reuse,
Frototyping, Programming Environments, Case Tools, Devdopment Prooess, Transition to
00, Cocxistencee of 0 and non-00, and other Organizational issucs.

Graphical user interfaces applied to map processing: an application
within a C+ + framework

G.Chiozzi - G.Ghezzi - M. Tucci

IBM SEMEA (') s.p.a.
Centro Ricerche e Soluzioni Teanico-Scientifiche
Segrale - Roma
{taly

October 1992

Greaphical user interfaces applied to map processing: aa application within a (244 (ramework

Abstract

Many tools and libraries are widely available for applications in computer graphics, under the AIX (*) oper-
ating system. FHowever, (hey cannot be casily infegrated info @ coherent programming environment.

On the one hand, X-Windows toolkits arc commonly used 1o build graphical user interfaces, with a standard
look and fecl, but they lack in pure graphical functions. On fthe other hand, advanced graphics is achieved by
librarics (e.g. gralPTIIGS (*) , G1.) that do not provide high-level primitives for the user inferface, i.c.
buttons, menus, cte. Such fibrarics and tools are not casy (o be mastered 10 a uniform environment.

In this paper, we descabe an Object Orienfed (OO) approach fo the construction of a framework, which
provides both advanced graphic capabilities and a powerful environment for developing user inferfaces,

The application framework 1s based on a class hicrarchy, which encapsulates both ATX X-Windows Bnvi-
ronment and graPTIIGS, and 1s implemented in CH 4 L on a Rise System/6000 (*) machine.

Several advantages stem from our approach. First of all, the development times for new applications arc
drastically reduced. Sccondly, the resulting code is smaller 1in size and casicr (o read and to maintain. At the
same time, it can be casily extended and reused

So far, the hbrary focuses on 2] graphic programming, and is in use, as a development tool, by groups n
Milan and Rome. As an example, we demonstrale a tvpical appheation m the ficld of map processing: an
inferactive tool fo display and edit the resulls of :nitomatic sembol detection in a map.

Background and needs

We have designed and nmplemented an Object Oricated Whrary to answer the needs of the “technical maps”
project at the Italian Scientific and Technical Solufions Centre (STCS hereafter). The library is wnffen n
C+ - and runs under the ATX operating system.

The goal of the library was to provide colleagues imvolved in the automatic map recognition project with an

casy tool to handle both the user interfaces and the graphic output. The processing of technical maps pro-
ceeds through several steps. We needed to baild Graplacal Users Interfaces (GUIs hereafter) with a standard
look and fect (o present these phases, which are usually mferactive: the user dialogs with the application.

While providing our collcagues with the required hibrare, we have tried to build a more general tool.

Objectives and constraints

There were several constraints unposed on the librarv. Prest of all) the knowledge of programming fan-
gnages of the would be users was very varied: they came from Tortran, C, gralPTIGS and X-Windows expe-
ricnees. Secondly, in the arca of automatic recognition algorthins there was a ot of code already writien,
which we wanied to preserve and reuse.

One of the main needs in the project is the ability of fast profotyping: the algoritms implemented must be
visyalized as soon as possible (o check then vahdiuy, Actaaliy, visualization s the mam debugging tool. To
achicve this, we bad to free our colleagues of the burden of feaming high level graphic and interface Tan-
guages, such as gralHIGS and N-Windows, washing precions time in fhe task of visualizing the output of
their programs and wriling a GUIT fo mteract with them. Restdes, we wanted these GUIS (o have o standad

look and feel.

With these constraints and goals in mind, we decided that the solution was an Object Oriented library based
on graPHIGS and X-Windows.

Architecture

The hibrary we have implemented is composed by several blocks, represented i the following figure:

| Failable_O ‘

ErrotManager]

AN

gPWorksiohon O (_,_,___, N
Core -© Application_O -
5@ Siruci / \
/ ~ lf ompomte |
PR TR fbem ! T \
-\ IUYNR

lDio!ogMonoger_

- TN

—~ / \

Tigure 1. Main classes

Failable_O and ErrorManager

Most of the classes of the library are detived from (he meta-class Pailable_O. 11 provides crror handling
support and relics on the TarorManager: a class built to colieet error conditions at run time and to ilf in
detailed reports. It makes usc of catalogs and the ATX miessage factlity. Fach block of the Iibrary has its own
crror message {ile, which can be casily updated. Morcover, cach new class user derived, can have ils own
message {ile for new errors, but use the old ones for inherited error conditions. The error report 1s saved i a
log file. Tt specifics the date and time of the crror and, for objects, the instance name, mcthod and error
condition:

IR SRS SR R T RS E R RS ES S SRR RS RSN A ST SRR ST RIS SRS SIS

Error messages will be logged starting at Hon Sep 14 17:51:16 1992

Mon Sep 14 17:51:15 1992: Appiication: Application Q() - cannot open the dispiay

Mon Sep 14 17:51:16 1992: Test me!: AddCallback() - cannot add a NULL callback
Mon Sep 14 17:51:16 1992: Test me!: SetState() - slate value is invalid: use TRUE or FALSE
GPPLCI AFMOOG2 COLOR INDEX =< ZERO

Mon Sep 14 17:51:18 1992: gmlLineColor(): the crror is described by the preceding graPHIGS message/s

GPDPLZ AFMO100 NUMBER OF POINTS < ZEROQ

Hon Sep 14 17:51:18 1992: gmline(): the error is described hy the preceding ¢raPRIGS messaae/s

2 Graphical vser interfaces applied (o map processing: an application within a C-- 4 framew ork

The X-Windows wrapper

The X-Windows wrapper, which we have called 1ib\Waob, 1s a tree of objects covering part of the Xtoolkit(2).
They arc derived from the Failable_O class.

XToolkit widgets, though very versatile, arc not casy to learn and use. Besides, most GUls require only a
few of X-Wmdows functionalities. Mirroring 1, we have sclected the most useflul, and (ransformed them
into objects. LibWob objects are used to build the GUI: selection_boxes, buttons, Jabels, menus efc. are
provided.

New classes are casily derived from existing wadgets: a template file 1s supplied with the skeleton of every
class and includes of the library. Of course, user defined classes can be dertved from cvery class in the library
trees.

The graPHIGS wrapper is linked to this block of the library through the gPWorkstation O object. Tt is a
graPITIGS workstation, and a child of Core O, via a morc complex hicrarchy. It is a peculiar child. though:
through it, we realized the shift in programming philosophy from gralPTTIGS to X-Windows. In fact, all
input cvents from cither of the two are driven i a single gueue, and then dispatehed (o the destination
object through the callback mechanism.

The graPHIGS wrapper
This part of the library was the most delicate to build. Tt covers 213 graphics (3). As we mentioned before,
graphics is of the utmost importance in our automatic recognition project

Many of our collcagues knew gralPTTTGS very well Those who did not were scared by 11s complexity, and

did not want to lcarn it. No one had any cxperience of OO prograniming, and the fear of wasting a lot of
time with this new technique was very spread out. While, at least at the beginning, an OO GUT could be
more or fess inherited from a ready made skeletor, postponing the moment of learning OO techniques,
graphics had to be dealt with dircetly.

The sotution we found was the following: we built a few objects with therr methods. These implement the
gralP TGS concepts of workstation, view, structure and mput devices. But we also wrote a set of “normal”
functions, covering gralPTITGS 21D primitives, which can be called as usual. "Two of these functions deal with
structure opening and closing. 'The functions are written in C 4 + and heavily exploit the possibility of over-
loading: in this way we get rid of a ot of parameters, and the user has to specify only (he ones meaningful
for his purpose. Plenty of defaults are supplied.

In this way we realized a smooth shift from traditionat to Object Oriented programming. The users of onr
library do not have to learn how 1o derive a new class if they do not feel Tike. Tt is necessary 1o leam some
CH + syntax to make an instance of an object, address ¢lass methods and make use of ovedoaded functions.
Buf the main part of graphic programming is made with graphic primitives within structures. And this can
he done using the set of overloaded functions provided. On the other hand, we compelied the users 1o
become acquainted with abjects and methods: the workstation mitiadization, view definition, and input proc-
cssing are made through the corresponding objects. The more they become skifled in using them. the more
they shift o the usc of the structure object with its methods instead of the overloaded functions.

Morcover, they began 1o ask for new implementation of classes, and fally they began to build their own
Nncw Ones.

The Application_O

Every user interface developed with our library requices ot least an mstance of the class Apphcation O
X-Windows mitialization, displayv handling, and a namber of <landard procedines are Indden to the pro-
gramnier in (his way,

The Dialog Manager

This block of the library provides a set of uscful tools to handle the communication with the application
user. Ilelp and message boxes arc provided to display information or wam the uscr. Data can be entered
interactively through panneled dialog boxes. T'or example, in this way it is possible to let the user choose
paths of navigation through the application.

All these panncls and boxes, and methods to manage them, are readily available, saving a fot of time and
avoiding repetitive tasks to the programmer.

The map editor

The map cditor we are going to show in this symnposium is @ dircet application of our library. ‘T'he ceditor
visualizes the output of our algorithms that automatically recognize symbols within a map.

By the term “symbol”, we usvally mcan alpha_numeric strings with different ornientations, or other signs
with a semantic content attached. Starting from the planar graph representing the ymage (1), scveral algo-
rithms identify subparts wich could be symbols. To perform this detection, a first screening is made on
metrics considerations: we scarch all the subgraphs whose connected components lay within a certain radius.
Then, other considerations arise from the topology of the graph. Besides, to achicve a very high standard of
deteetion, we make use of some semantics too, cven though a strong effort of gencralization 1s made.

The map cditor visualizes the symbols so detected and labelled.

The main benefit of such an cditor 1s that it provides a powerful debugging tool: this 1s nceessary to make
the subsequent step, from symbol detection to symbol secognition. 'FThe cdifor allows a first cheek of the
symbols detected, hence of the criteria used o achicve the detection. Tt allows the application devcloper to
beecome acquainted with the graph, moving along its edpes and vertices, and to study the tipology and occur-
rences of the varous symbols.

In this way, the process of symbol recognifion becomes an iterative onc: from a first visualization of the
output, hints are derived for a better detection. These arc coded and then visualized again for debugging.

The cditor allows to visualize the symbols from different pouts of view: various kinds of hightighting can be
associated to graph nodes, graph edges, different ways of classification, different symbols.

Other timportant {catures of the map editor arc the pick and scarch functionalitics. 'These too are very useful
for debugging purposcs. They allow an interactive data retrieval. An clement of the graph can be picked
through the library object which masks the gral’IHGS device, and information concerning 1t can be
obtained. Vice versa, it 1s possible to ook for a cerfain clement enfering the relative input via a dialog or

sclection box.

T'his map cditor 1s a good example of mixed prograniming: in a standard C program the classes, objects and
methods of the Tibrary ave used. To build this editor, we nsed many detection algorithms which were alrcady
available at our Centre. Obviously, these parts have not been rewritten, and no classes have been used. Only
the graphic display of these algorithms has been changed, using the graphic functions available. The whole
vser inferface has been written with objects and methods of the library. Morcover, we derived new classes to
tarlor the available ones to our specific needs.

4 Graphical user interfaces applicd to map processing: an application within a C-+ 4 framewark

Conclusions

Our library covers a subsct of X-Windows and gralTTIGS. 1t is much less versatile than they are. On the
other hand, it has proven to be much easier to learn and use.

No 3D graphic functionalities have been implemented, cven though the library s casily extensible.

It is avattable under the ATX operating system only, while if could be ported under VM too.

The use of our library brought many advantages. Tirst of all, the benefits derived from an OO approach: a
cut off 1 the development time, a significant reduction of the code size thanks (o the reduced number of
mstructions, formal neatness of the code. The code 1s cagy to read and matnfain, and it is cxtensible and
reusable.

Sccondly, the usc of the library mcaus a cut ofl m the icarning curve, thanks to the higher level
functionalitics and tools available and to the simphification of usc.

The possibility of “mixed” programming allows a gradual shift to Object Oriented Programming. ‘The
library has been writlen 1o provide a standard look and feel. but 10 is possible 1o generate new applications
with different interfaces.

A problem, ariscn while the library was under development, is that of documentation and support. Our
group ts made of several people, some of them working in Rome and some i Milan. Our development
standards require that all our source code be well documented. This was sufficient within our group. But
soon we realized that our library had become a more general tool. 1t can have, and has already had, other
applications. ‘The problem of a more official documentation arose. Besides, we cannot offer the support that
an official product would require. Our management is considering the possible solutions (o these problems.

(*) eraPITIGS, ATX, Rise System/6000, and TBM SEMEA are trademarks of IBM corporation.

Bibliography

(1Y Boatto .. ¢t al, An Interpretation Svstem for Tand Register Maps, 1110 Computer, vol. 25, no.27,
pp.25-33, 1992,

(2) Youag D. The N-Windows System: programming and applications with X1, 1990, Prentice 1all

(3) Toley 1.1, et al., Computer graphics, principles and practice, 1990, Addison Wesley

