
--... -. ...-
-~--- ----- --- ~---- ~ ---,-- ---.-~-
-~- .. --- ---- - . -...

Interdivisional Technical
Liaison

Conference on Image
Processing and Visualization

Milan, September 15th - 17th, 1992

Conference Organizers: B. Collins and A. Stein

Local Organizers: P. Corsi, A. Bondi and L. Cicero

MigWob: a coherent C++ interface to mixed X-Windows and
graPHIGS programming

G.Chiozzi - G.Ghezzi - M.Tucci

IBM SEMEA s.p.a.
Centro Ricerche e Soluzioni Tecnico-Scientifiche

Segrate - Roma

S. Pantarotto

Universita' degll Studi
Oipartimento di Scienze deJl'lnformazione

Milano •

September 1992

r

ii Mig\Voh: a cClhC'rcnt C+ + inlcrrace to mixed X-Windows and graPIIIGS programming

Abstract

Mig\Vob i~ a uniform and coherent programming environment for developers who need to get the best from
both X-Windows and graPllIGS(·) under the AIxn operating system.

X-\\'indows power stands in its toolkits, consjdered as tools to develop Graphical User Jnterfaces (GUI here­
after) with a standard look and fcel, but it lackg in pure graphical functions. On the other hand, graPH1GS is
a powerful language for 2 or 3 dimensional graphic programming, but it does not make high level primitives
for the user interface (buttons, menus ...) readily available.

X-\Vindows and graPIJIGS are difficult to be mastered and arc too difTerent from each othef to be integrated
in a single application. MigWob integrates X-Windows and graPIlIGS in a unique framework, via a C+ +
hierarchy of classes.

The main benefits gained hy the use of Mig\Vob are the following:

• a cut off in the learning curve, thanks to the fonnal neatness of the library;

• a cut ofT in the development time;

a significant reduction of the code size due to the reduced numtx-r of instructions;

• the resulting code is easy to read and to maintain;

the code is. also easily c~tensible and reu~bte, thanks to thc characteristics of the Object Orien1ed LanM
guage used.

Currently, a working prototype of the library is available; it covers all the needs of 2D graphic programming
(the area of our interest). It is a tool in use by groups of developers in Milan and Rome. Extensions to
MigWob will be driven by the feedbacks coming from this on field usage.

At the same time, an Interactive User Interface Builder, called Make\Vob. is under development. With this
last too], programmers will be able to "write" MigWob code using mainly the mouse.

Introduction

Mig'Vob is an ohjcct-oriented lihrary for two dimensional graphics. It con~ists of two blocks: LibGm and
Lib\Vob. They are built over X-\Vindows and graPHIGS respectiVely.

Mig\Vob was born within a wider projC'rt in the Italian Scientific and Technical Solution C..enter (STCS
hereafter), where the image processing group works on automatic recognition of maps and technical
drawing". ThC$C activities arc perfonncd in a Rjsc Systcm/600()(·) environment, under the A'IX operating
system. During the interpretRtion proces~ing of a map, some automatic steps need a final check, to confirm
the re~u1ts computed by the system. Therefore, user interfaces providing advanced gntphic capabilities are to
be built. Moreover, the only way to test and debug algorithms for the automatic interpretation process is to
display their results on a screen.

A ba51c design issue of Mig\Vob was to provide a framework both to build 2D graphical user interfaces and
to serve as a development and debugging tool for people involved in the automatic recognjtion of maps.

On the one hand, we needed a tool oriented to free application developers of the burden of imp1cmenting the
u~cr interface. On the other, we wanted to free them of the burden of learning and using a lihrary providing
advanced graphics (e.g. graPI IJGS, GL, etc.). Mjg\Vob ofTers a set of high-level tools to thc programmer
~killed in building GUIs: new objects can be derived in an efficient and powerful way. To the application
developer who needs to realize automatic programs, Mig\Vob ofTers a quick way to build a simple graphic

interface, while it provides functions and methods for the output visualization. These functions and methods
hide graPHIGS and X-Windows, so that a deep knowledge of the~ is not required.

Events

X-Windows is event driven. The application is embedded in the "'main loop"'. The event queue is constantly
fed by the events occurring in the X-Windows environment, both specific or stranger to the application.
X -Windows manages the queue and dispatches the proper rnes.5ages to the application. The application
simply waits for input events. Then it answers through the callhack mcchanism[lJ. In MigWob, all the
events are driven in a single queue and then dispatched' to the relative. graphic ohject. There are· no functiona1
distinctions between X and graPHIGS events: they are treated in a uniform way.

Mig\Vob can require a shift in programming philosophy to the programmers u~ to graPHIGS. In
graPIllGS, most programmers design their applications constantly checking the input that the workstation
receives (Request or Sample modes), in order to answer with the proper actions. MigWob requires the pro­
grammer to adhere to evcnt-driven programming[2].

Objects

l\1ig\Vob is written in C++. The possibilities of this language are exploited in two ways. Firstly, we take
ad~antagc of the possibility of overloading functions and setting defaults. In this way, we' get rid of hundreds
of parameters and take care of all the settings that the programmer does not want to ~y. The application
specifies omy the things relevant to the program. All the others are dealt wjth by MigWob. Secondly, we
heavily use an object-oriented approach. All the element~ of Lih\Vob and most of the elements of LibGm
are objects.

We built the tibrary so that the programmer not used to Object Oriented programming does not have to
build new objects or define classes and methods: there is no need to learn C++ , and it is possible to go on
writing programs in C, or even in Fortran. It is though true that thc programmer, in ordcr to use MigWob,
must gain some knowledge of object-oriented prograrnmln-g. It is necessary to understand the change from a
function-based language to a data·bascd one. A little syntax to invoke objects' methods must be learnt. Of
course, the programmer must get used to overloading.

Programming GUls

Nowadays, it is widely rccogni7.ed that the application and the GlJl shou1d be sharpJy separated. Not 'only
the two tasks should interfere as little as possible. but they should be accomp]jshed by different people[I].
lInfortunate1y t this is often wishful thinking. Most of the time it simply happens that there are not enough
human resources to separate the task~, and the application dc\'c1oper must take care of the GUI too.
MjgWob provides a simpJe tool to acrueve trus task with the least effort. It is worth reminding that in
graPIIlGS it is impossible to distinguish between the application and the graphic interface.

2 MigWob: a coherent c++ interface to mixed X-\Vindows and graPI1IGS programming

~.

'~.

What MigWob is and how it works

We try to give here a very general outline of the architecture of MigWob. As we mentioned abovet MigWob
consists of two hJocks: LibWob and LibGm. The 10gical trait-d/-union between the two is given by the
object "'gP\Vorkstation'" described below. Layers of higher-level functions can be built above MigWob, using
the tools it afTers. We built one for our purposes, i.e. a map editor.

LibWob

The main feature of X-Windows is given by the XToolkits. They are excellent tools to build graphical user
interfaces, and nowadays we are all used to see interfaces with a standard iook and feel: we accept rules on
where certain buttons must be put; we expect the menubar to show popup menus when we click on one of
its items; we want message boxes to appear in order to warn or advice US.' XToolkit and Motif widgets
penonn this job in an excellent way. It is true, though, that X .. Windows has its drawbacks: fJIstly, it is too
rich. There are hundreds of functions and parameters to Jearn; and it requires an event-driven approach
which eou1d be unfamiliar to the application developers. It is unwise to require application developers to
learn X-\Vindow~ in order to use the few toolkits they need to build an interface.

Lih\Vob has been OUT solution. LibWob is a library of objects built over XToolkit and Motif.
The main interface objects are represented in the following trees:

~o

ngure 1. Main interface objects in UbWob

3

Every user interface built with this library is dealt through an instance of class Application _ O. This object
takes care of every initialization and of the display handling.
LibWob interface elements are a set of classes wruch correspond to the Motif widgets. Mirroring the Motif

architecture, we built two main meta·c1asses 'of objects:

Primitive 0

Compositc_O

Error

The instances of classes derived from Primitive 0 cannot include other objects:
labels, buttons, scroll·bars are of Primitive type.

Composite _ 0 is the meta·c1ass whore derived classes can contain onc or more
objects. Two more main classes are derived from Composite _ 0:

Shell 0

Constraint_ 0

This class, and those derived from it, can have a single child
object .

Again a meta-cla~~, whose classes can include more than a
single object. There are constraints between these objects.

Another important feature of the library is the error handJer:

Error handler. It intercepts MigWob errors and sends the appropriate messages. The
messages are dealt with by the use of catalogs (the standard AJX message facility)
which can be easily updated and modified by the w;er.

LjbWob is easily expandible, thanks to its structure. If the need arises, the user can derme a new class. A
template me i~ supplied with the skeleton of every class and includes of the library. The new class can be
ea~ily fitted in the Lib\Vob hierarchy, thw; inheriting all the methods of the parent class. It is then sufficient
to update the supplied makefife and compile the library. Building a new class is much easier than building a
new \vidgcl. Lib\\'ob includes also higher level objects to case frequent use operations: dialog and message
boxes are typical of this set:

I~I

I~~~I
~I

I~\~I
I~

L--________________________ • ____ ---'

Figure 2. Simple diaJogs

LibGm

GraPIJ1GS is a very powerful graphic language. It is very versatile and it virtually answers all the needs of a
graphics programmer. It is a difficult language to learn, though, and it has a 10ng start up time. The con·
cepts and hierarchies rdated to the workstations, "iewports, windows. views and structures are not readily
mastered . The number of routines and parameters is very high.

Most applications actually use 'only a subset of graPIIIGS routines and functionalities. We decided to choose
the most suitahle subset for our purposes (2 dimensional primitives and their attributes). Also, we took
advantage of the fact that the gTaPllIGS architecture is suited for an object-oriented implementation. LjbGm

. 4 MigWob: a coherent C+ + interface to mixed X-Windows and graPI riGS programming

'.~

makes some choices, concerning for example the type of connectlon to the workstation, or which graPHIGS
routine is best suited for a certain task, on behalf of the programmer. LibGm supplies the programmer with
a set of primitives and methods easy to use. Our aim has been that of freeing the application deVeloper from
worrying about anything but the task the application must achieve. The 'distracting'" but necessary parts
have been loaded on, and hidden in, the library. Besides, LibGm provides a set of high-level functions, which
would require many graPHIGS instructions.

LibGm is built over graPHIGS. Its main o~jects are the following:

gP\Vorkst:ttioo_ 0 This object links LibWob and LibGm. It actually is an object of the Constraint_ 0
class, but of course cannot contain other objects. Its methods create and connect a
workstation, associate views 10 the workstation, and deal wjth change of coordinates.

Input

gPVicw

Strnct

This is a meta-c1ass whose derived classes define the input devices.

1t creates the object view. The user manages the view by name. The methods associ­
ated with this object deal with the wind owing, association of graphic structures to the
view, panning, zoorrung in and out, etc .

It creates a grapruc structure. Its rnethod~ include all the bidimensional graphic primi­
tive~ and methods to edit a structure.

Most of the pararneter~ concerning workstations, window~, and views are hidden to the programmer, a~ well
as the creation of the workstation and of the structure store. In order to maintain a "'soft"" approach to the
library for 1hose programmers not familiar with object-oriented programming, all the graphic primitives,
besjde being methods of the Structure object, are duplicated and can he used a~ nonnal overloaded functions.

Other ·products.

There are other products on the market which accomplish some of the ta~ks achieved by MigWob. Most of
them simply put a graPlIlGS workstation in 3: window. These do not actually realize an integration between
x-Windows and graPlIIGS.

Some ljhranes use an object-oriented approach. These too, though', are based EITHER on X-Windows[3],
OR on graPl1IGS[4], and do not present an integrated environment. Moreover, many of the Object Ori­
ented lihraries built over X-\Vindows OR on graPIIIGS[4], are actual1y based on Xlib only[4]. XLib does
not inc1ude widgets. This means that the experienced Motif programmer is set back by the need to approach
the new library in a very different way. Besides, the library developers must accomplish again many of the
ta~ks which 'Motif already accomplishes. This was heyond our scope. Often, these Object Oriented libraries
have. a 100k and feel" which is usually very differcn1 from the Motif one. But Motif 100k and feel'" and the
us!' of widgets have become a de facto standard.

MigWob drawbacks

Ooth Lib\Vob and LihGm cover a subset only of X-\Vindows and gr~rIIIGS re~pective)y. This obviously
means that MigWob is less versatile of X-Windows or graPJlIGS. Fewer things can be done. On the other
hand, it is much easier to lean) and to use. Mig\Vob is a two dimensional graphic library. At the moment,
no three-dimensional functionalities have been implemented. However, the library is easily extensible, and
compatihility towards X-Windows and graPIlIGS has been maintcUncd. This means that, should the need
arise, direct cans to graPHIGS and X-Windows can be used. \Ve strongly discourage Mig\Vob users from
the use of this work around. Besides, the library is available under the AIX operating Syfi1em only, while it
could be parted under VM.

5

Learning MigWob

When we began to work on MigWob, we decided a "'soft" approach to c++ and Object Oriented program­
ming, fearing that the change of phjlosophy would have been too bold for those colleagues used to third
generation languages. So, in the beginning, we decided to exploit mainly the possibility of overloading, using,
especialJy for the graphic routines, as few objects as pos~ible. We were then both pleased and surprised when
those same colleagues, when they began to test the library, asked us to implement more and more object­
oriented functiona1jties.

MigWob is currently in use both in the Italian STSC and in other]BM SEMEA(·) departments. The results
have been rather encouraging.

MigWob is easy to learn.]t has been used by a wide variety of people: graPJIIGS users, X-Windows users,
programmers not acquainted y.tith graphics. They all shifted quite easily to MigWob and appeared to enjoy
the possibility of an integrated environment very much. They put the lihrary under te~, which helped us in
the debugging phase, givjng us useful suggestions at the same time. However, we have maintained the possi­
hility of a "soft" approach to the library: the programmer who does not want to make an abrupt shift to
object oriented programming can simply exploit the overloading of functions. For this purpose, all the
methods as~()ciated with the Structure object in LibGm ha\'e been duplicated and can be used as plain func­
tions. Besides, in projects involving the automatic recognjtion of maps, graphics is the most immediate
debugging tool; MigWob is very handy for this practical purpose.

Bibliography
[I] Young D. - The X-lVindow System: programming and applications with Xt, 1990, Prentice Hall

[2]

[3]

Foley 1.0., vam Dam A., Feiner S.K., lIughes J.P. - Computer Graphics, principles qnd prac.tice,
1990, Addison-WesJey

Pekete J.D. - J¥lVL, a J¥idget Wrapper L;brary for C+ +. 1990, Laboratoire de Recherce en
Informatique, FacuJte d'Orsay, Orsay Cedex (France)

[4] \\Tampler S. - Del'c!opment of a graPHIGS Ba.red Objec.t-Oriented Graphics System, 1991,
graPII1GS User's Group Meeting, Blacksbourg, Virginia (USA)

[5] Caldcr P.R., Linton M., Vlissides J. - InterViews: A C+ + Graphic.~l Interface Toolkil, 1988.
Computer System Laboratory I Stanford University

(*) graPI11GS, A]X, Rise System/6000 and IBM SEMEA are trademarks of the IBM c.o".,oration.

6 Mig\Vob: a coherenl c+ + interface to mixed X-Windows and graPJIIGS programming

~;

