
THE ALMA COMMON SOFTWARE, ACS

 STATUS AND DEVELOPMENTS

G.Chiozzi1, A.Caproni1, R.Cirami4, P.Di Marcantonio4, D.Fugate2, S.Harrington5, B.Jeram1,

M.Plesko3, M.Sekoranja3, H.Sommer1, K.Zagar3
1European Southern Observatory, Garching, Germany

2University of Calgary, Calgary, Alberta, Canada
3Cosylab, Ljubljiana , Slovenia

4INAF Osservatorio Astronomico di Trieste, Trieste, Italy
5National Radio Astronomy Observatory, Socorro, New Mexico, USA

ABSTRACT
The ALMA Common Software (ACS) is a software infrastructure for the development of distributed

systems based on the Component/Container paradigm. ACS is being developed primarily for the
ALMA collaboration to provide a common and unifying infrastructure used by all partners and across
all layers of the system [5]. The usage of ACS extends from high-level applications such as the
Observation Preparation Tool that will run on the desk of astronomers, down to the Control Software
domain. From a system perspective, ACS provides the implementation of a set of design patterns and
services that make the whole ALMA software uniform and maintainable; from the perspective of an
ALMA developer, it provides a friendly programming environment in which the complexity of the
CORBA middleware and other libraries is hidden and coding is drastically reduced. ACS was
presented at ICALEPCS for the first time in 2001 and then in 2003 [1][2]. Since then, the services
provided by ACS have been extended and made reliable and scalable. The control system for the
ALMA prototype antennas is based on ACS and is routinely used for the technical and scientific
evaluation of the antennas [6]. Thanks to the fact that ACS is available under public LGPL licence, the
community of users outside ALMA is growing. In particular the control systems of several telescopes
are being developed on top of ACS, with the different teams sharing and reusing design concepts and
actual software Components. The ACS community has met at a workshop hosted by this conference.
This paper presents the status of ACS and the progress over the last two years. Emphasis is placed on
describing ACS from the point of view of control system development. More details on specific ACS
services and on projects using ACS will be provided by other papers.

INTRODUCTION
ACS has been under development for 6 years. By now, the core concepts have become very stable

and have been presented at previous editions of this conference [1] and at other conferences [3].
These are the main characteristics of ACS:

• ACS provides the basic services needed for object oriented distributed computing. Among
these:

o Transparent remote object invocation
o Object deployment and location based on a container/component model
o Distributed error and alarm handling
o Distributed logging
o Distributed events

• The ACS framework is based on CORBA and built on top of free CORBA implementations.
• Free software is extensively used whenever available, to avoid “re-inventing the wheel”.
• ACS primary platform is Red-Hat Enterprise, but it works and is used also on other Linux

variants (Solaris support was recently abandoned because not used).
• Real time development is supported on Real Time Linux and VxWorks.

• Development is supported in C++, Java and Python. Any other language with a CORBA
mapping can be used, if needed.

The total effort allocated to ACS development by the ALMA project is of the order of 25 man years,
but the project can count also on additional external contributions.

In this paper we will discuss the evolution of ACS with respect to these papers, taken as reference
material.

In the last couple of years, ACS has been extensively used “in the field”.
The ALMA prototype antennas are running a control system based on ACS [6] and they are used

routinely for the evaluation of the antenna performance and for testing the ALMA architecture,
hardware and software.

The complete ALMA software is integrated and tested as a whole on a periodic basis, with two
official releases per year, by the Integration and Testing team. This provides very good testing and
feedback of the ACS global infrastructure, performance and tools from the operational and deployment
point of view.

ACS-based software is also used in engineering laboratories by the teams developing hardware and
devices for ALMA, as the basic software infrastructure. This provides feedback from users outside the
community of ALMA software developers.

The development of ACS is driven by two forces:
• The long term development plan, which defines the major ACS features and the timescale

for their availability.
• The release planning activity (twice a year) where the feedback and requests from all ACS

users are collected and discussed to prepare the detailed planning for the next release.
Based on this input, the work of the last two years has followed essentially three main paths:

• Implementation of new features foreseen in the development plan or requested as new
requirements by ALMA subsystems. This has covered mainly areas in the high-level and
data flow software.

• Cleanup or improvements in the design of core ACS packages. These changes have been
driven by feedback from the users either in terms of specific requests or as the result of our
analysis of support requests. A major role here has been played by the Integration and
Testing activity.

• Improvement of reliability, stability, scalability and performance. These aspects are
becoming more and more important as we approach a more “operational” environment, even
though we are still far from having the ALMA interferometer running at the Chilean site.

Important feedback comes also from the growing community of ACS users outside of ALMA, in
particular in terms of bug reports and suggestions for design improvements.

COMPONENT CONTAINER MODEL
The ACS architecture is based on the implementation of a Container-Component model [4]. The

Containers provide the infrastructure for the applications and the developers only need to concentrate
their efforts on developing the domain specific code in their Components.

This enforces a uniform structure in all subsystems.

Master component
The ALMA Software, like many experimental facilities, is composed of subsystems that have to

interact and that have to be administered (started, stopped, checked for health) by a central
coordination application, the Executive. It is crucial for the Executive to be able to treat all subsystems
as much as possible in the same way, to avoid having to code a lot of domain specific intelligence in
the Executive itself. This can be achieved by defining a standard state machine that each subsystem
has to implement and expose to the administrator. We have therefore specified a subsystem level state
machine and implemented it in a Master Component. This is a big help in getting a system that is easy
to integrate even if the subsystems are developed by completely independent teams, as is the case for
large international collaborations.

The introduction of the Master Component has been very effective and has made much simpler the
system integration, forcing many subsystems to restructure, in a standardized way, their startup and
shutdown procedures and also think about how it’s possible to monitor their own health.

The state machine, initially very simple, has been refined in a couple of design iterations to take into
account the need to handle interdependencies between subsystems. It is shown in Figure 1.

This state machine
Component has not been
implemented by hard-coding
state logic. We have instead
developed a prototype state
machine Component generator
from UML state machines.
This implementation relies on
the Open ArchitectureWare
code generation engine that is
used in other parts of the
ALMA software [12] and in
particular to build the ALMA
data model. This tool already
includes the capability of
parsing UML models saved in
XMI format and is therefore
compatible with models edited
with most commercial UML

drawing tools. The cost of implementing this prototype of generator has not been higher than the cost
of developing the Master Component in a traditional way and we believe that this approach to state
machine development is very efficient. The prototype satisfies our current development needs inside
the ACS team and we are ready to make it a reliable tool for general usage when we will have requests
from our user base.

Container Services
The Containers provide to Components an infrastructure and an environment to live in[4]. Whenever

a Component needs to access the external world or needs services like logging, threading or naming
resolution, the Container provides them through an interface called ContainerServices.

In the last couple of ACS releases we have significantly improved the encapsulation of the services
by better defining the ContainerServices interface and making it almost identical in the three
programming languages officially supported by ACS (C++, Java and Python).

Before, particularly for C++, there were various situations where the Container and CORBA were
not properly hidden to Components, while now the ContainerServices provide a good abstraction of
the services that a Container should provide and CORBA is hidden as much as is reasonable.

In this way it is in principle possible to replace our Container implementation with another, also
based on completely different technology, by implementing an adequate ContainerServices and base
Component classes, without touching the component’s application code. This was requested by the
Offline data reduction subsystem, with the perspective of implementing data reduction components to
be used outside of ALMA, on systems not based on ACS but on other component/container
technologies.

The most important services provided now by the ContainerServices interface are:
• Access to other Components
• Access to the logging system
• Access to the Configuration Database
• Component state management and life cycle (described hereafter)
• Component threading service (described hereafter)

Figure 1: Master Component state machine

Component Lifecycle
Initially the Container was simply instantiating Components upon request of the Manager [4] when

needed (for example when requested by other components) and destroying them when not needed any
more.

Experience with the Components developed by the ALMA subsystems has shown this was not
sufficient to properly handle runtime dependencies between multiple Components, access to hardware
and software resources and error conditions.

We have therefore defined a simple lifecycle interface that each Component has to implement. The
standard lifecycle methods (initialize, execute, cleanup, aboutToAbort) are called by the Container
according to a lifecycle state machine that is used by the Container to keep track of the health and
activation conditions of each Component.

Components have access to their own life cycle state machine through the ContainerServices
interface.

EVENT HANDLING AND NOTIFICATION CHANNEL
ACS provides an event system based on the publisher/subscriber paradigm and implemented on top

of the CORBA Notification Service [13].
The ALMA software makes very extensive usage of this system, actually well above the original

expectations at ACS inception time. The designers of ALMA subsystems find it very convenient to
decouple the subsystems by publishing and receiving events instead of using direct interfaces.

The event system is used to:
• Synchronize the activity of subsystems by means of the publication of synchronisation

events
• Publish data to be retrieved by one or many subscribers, not known a priori. This mechanism

has been preferred in many cases to the callback registration design that is also available
with ACS.

In the last years the design of the ACS Notification Channel classes has been drastically improved to
make the usage of the system trivial and to shield completely the users from CORBA.

Essentially now it is sufficient to define in the IDL modules the names of the channels to use and the
data structures to be transported. Publishers and subscribers can then handle the data with a few lines
of code. The configuration of the Quality of Service and Administrative properties for the channel can
be done through the configuration database.

This extensive usage of the Notification Channel has caused some problems at integration time at the
level of the interfaces between subsystems.

If it is true that the publisher and subscriber are very well decoupled, it is also true that it is much
more difficult to spot misalignments due to changes in names or data structures, since there is no direct
invocation of IDL interfaces. Therefore it often happened that changes introduced by one subsystem in
the channel names used to publish data and in the structure itself of the data published were spotted
only at integration time. In some cases, expected events were never published or published events had
no subscriber waiting for them.

To overcome these problems we have worked in two directions:
• Defined strong coding and naming conventions for the definition of notification channels in

IDL files
• Developed checking and debugging tools

The Notification Channel classes have been modified to make it easier to handle events following the
IDL conventions, and to make it more difficult to publish and receive arbitrary data on arbitrary
channels. In this way application developers are pushed “to follow the rules” and to use special
features only with full awareness.

Checking tools have been developed by the integration team to analyse the code and check
consistency with the help of the naming conventions. In the future we will make use of CORBA IDL 3
event specification notation, which has been introduced with the purpose of addressing these issues.

At the same time we have
implemented an Event Browser
GUI (seeFigure 2: ACS Event
Channel Browser) which allows
run-time inspection of all the
activity in the Notification
Channels to allow operators and
integrators to spot anomalies in
events published and in the
network of publishers and
subscribers.

THREADING SUPPORT
Many Components, in particular in the area of the Control Software, have a multithreading structure.

This means that there are threads of execution, like control or monitoring loops, that are intrinsically
associated with the Component, i.e. are started when the Component is initialised and stopped when
the Component is taken down.

We have seen that the management of such threading Components was a source of problems in the
application code, with threads left hanging after Component destructions and other misbehaviour.

We have therefore decided to provide support for well behaving thread design patterns, in particular
for C++ and Java.

Each Component now has an associated pool of threads. The ContainerServices provides
Components with a Thread Manager object that can be used to get hold of Component-specific
threads. When the Components are destroyed, the Thread Manager makes sure that all threads are
properly terminated.

In C++ we have built threading classes based on top of the very good APIs provided by the ACE
framework [14]. Sub-classing and overriding one method is sufficient to have a thread function
executed once (in order to have one-shot asynchronous action) or in a repeated loop (as in the
implementation of a control loop). Complete management of the thread (start, stop, resume, etc) is
possible.

In Java, where a good support for threading is available natively, the Thread Manager relies on the
Java classes provided by the concurrent library. Also in the case for Python we rely on the native
libraries.

REAL TIME SUPPORT
In the last two years the ALMA project has carried on a major paradigm shift in the implementation

of real time software.
The real time part of the control system for the Test Interferometer was implemented using VxWorks.

This implied the usage of Local Control Units running the VxWorks operating system. A complete
implementation of ACS Containers in VxWorks was necessary to support the deployment of
Components on the LCUs.

Now we use Real Time Linux (in the RTAI flavour[17]) and the new implementation of the control
system based on RTAI is being deployed on the test antennas in these months. The decision to change
the real time operating system has been the result of an evaluation of the two alternatives in terms of
technical advantages and disadvantages, cost and future perspectives.

RTAI puts a real time kernel inside a normal Linux PC. Most of the code runs in a standard non-real
time environment. Only the time critical parts run in the real time kernel.

With the previous architecture, the code of entire components was developed and deployed in the
real time operating system.

Figure 2: ACS Event Channel Browser

With the new architecture most of the code is “standard Linux code” and only tiny parts are
developed as real time kernel modules. A very critical part is then the communication between real
time and non real time code.

This requires a major change in the architecture of applications, because real time and non-real time
code need to be clearly separated and their communication needs to be very well thought out,
otherwise it will introduce performance problems and possibly disrupt the real time behaviour. Using
Real Time Linux, the code running in kernel space must be as small as possible, because it is much
more difficult to develop, test and debug than the “normal” code (and also with respect to VxWorks
code); code must be written in plain C and only very limited libraries are available.

The transition has been longer and more complex than originally foreseen because we were not
facing a simple porting but really a re-design, with a completely different allocation of responsibilities
between the various parts of the code. The two approaches have very different advantages and
disadvantages.

On the ACS side this means that we do not need to provide a full Container implementation for a
new real time operating system, since the container will in any case run on the non-real time side of
Linux. We have instead provided small support libraries for the communication and tools to manage
kernel modules. We have also provided convenient makefile and build support, integrated with the rest
of the development environment. All this work has been done in strict collaboration with the Control
and Correlator teams, mainly in the form of contributions to ACS consisting of code initially
developed directly by them.

Once the phasing out of VxWorks from ALMA is complete, we will probably maintain VxWorks just
for and with contributions of other projects outside ALMA using ACS in that environment.

BULK DATA TRANSFER
ALMA has very strong requirements for the amount of data that needs to be transported by software

communication channels, in particular from the correlator to the archive (raw data from the antennas is
luckily enough not under software responsibility).

A major development of the last year has been the bulk data system, devoted to the transport of huge
amounts of data and based on the CORBA Audio/Video streaming service specification.

The bulk data system is described in details in [9] in this conference.
We have implemented very easy to use classes on top of the A/V streaming that implement the use

cases we have identified for ALMA shielding completely CORBA and the details of the A/V itself.
Using this system we avoid the performance penalty introduced by the CORBA communication

protocol, transmitting data outbound directly in TCP or UDP format. On the other hand, we still use a
well defined and standardized protocol for the handshaking and administration saving the effort of
designing and implementing our own proprietary solution.

Unfortunately the only implementation we have available is the TAO C++ implementation. For the
time being we do not have strong requirements to have the bulk data transfer available in Java or
Python. We think anyway that it would be a reasonable effort to port to Java the basic components that
would be needed to have our use cases working.

IDL SIMULATOR
ALMA is composed of many subsystems, each providing several Components. The development is

distributed across many sites and proceeds in parallel on all subsystems.
As a consequence, when testing or integrating multiple subsystems or Components not all needed

features are available at all times. It often happens that entire Components are not available at all.
We therefore have the need of simulating components or the features that are missing.
Another important development of the last year has been a powerful interface simulator.
This simulator, described in detail in [7] in this conference, allows simulating entire Components

starting from their IDL formal interface specification. The simulator is capable of providing default
behaviour for all methods and attributes, but the user can implement “intelligent simulation” using
configuration files and a runtime API.

The simulator leverages standard CORBA features like the Interface Repository and the dynamic
characteristics of the Python interpreted language to make it possible to discover and change at run
time how interfaces behave in simulation.

ALARM SYSTEM
The Alarm System is a very important part of any Control System. For ALMA we have standard

requirements, common to many other scientific experiments, including the need for reduction of
alarms to reduce the flooding of events and make it easier for operators to understand the real root of
the problem.

During ICALEPCS 2003 we were starting to look into the design of the ACS Alarm System, when at
the conference we saw the LASER system, under development at CERN for the LHC accelerator[15].

This system has requirements very similar (actually, more stringent) to ours and uses concepts
compatible with the architecture of ACS.

We have therefore started an evaluation project with the aim of using the LASER system within
ACS. This requires bridging the technologies used in the LASER system (for example the Enterprise
Java Beans and Java Messaging System) with what is used in ACS (for example Components and
CORBA Notification Channels) with minimal effort so that it is possible to maintain a common code
base.

This project has been carried on until few months ago with low priority, but in the last months the
priority has gone up and we are now in the conclusive phases of the evaluation, being able to handle
the complete chain of alarm propagation in ACS with a customised LASER system.

We have encountered difficulties because the technologies used in LASER and ACS are apparently
very similar but, in practice, the details make it quite difficult to keep the code working with both.

But we now expect to put in place an active collaboration so that the customised LASER system can
be integrated in ACS and used for ALMA and other projects, while providing valuable feedback and
contributions to the LASER team.

TASKS AND PARAMETERS
A task is a program which starts up, performs some processing, and then shuts down. A task may or

may not require various ACS services, depending on the context.
Tasks have been introduced in ACS in the last year, as a requirement for certain types of offline data

processing[18]. In these use cases a simple stand-alone executable is required, while asking the user to
perform a complete ACS startup (services, containers, manager, configuration database) is not
desirable. In these situations, running a task should involve simply typing one command, possibly with
some input data, at the command prompt.

The task mechanism (currently implemented by ACS in C++) is able to run either with or without
ACS services:

• A special "static container" allows the functionality of the ACS container to be linked
directly with the task executable at compile/link time (normal ACS Components are
dynamically loaded upon request).

• The static container allows a task to function as a valid Component in the ACS Component-
Container model while not requiring a complete ACS startup.

• In the event that ACS services are available, the task Component, using the linked-in static
Container, can operate as a full-fledged ACS Component.

Input parameters can be complex data sets, with mandatory and/or optional elements.
ACS provides:

• a mechanism for the task developer to define a task’s expected parameters and other meta-
data via XML, including strong parameter validation rules

• a mechanism for the task user to define the values of those parameters (for a particular task
execution) either via XML or as arguments on the command line

• a mechanism to parse and validate the parameters provided at run time by the task user
• an API allowing the task developer to query an in-memory representation of the parameters

provided by the task user.
This enables new tasks to be added rapidly and with a minimal programming effort.

While developed explicitly for situations related to offline data processing, we see now new
applications for these concepts, in particular for the implementation of small clients used from the
command line.

GRAPHICAL USER
INTERFACES

ACS supports the development of GUIs
in Java providing the ABeans
libraries[16]. In the last ACS release we
have completed the switch to Eclipse as a
Java development environment by
integrating ACS GUI development with
ABeans in the Eclipse Visual Editor and
providing a small plug-in for this purpose.
Before, interactive GUI development was
supported under NetBeans.

A number of GUIs have been developed
in Java text editing or interactive mode
within Eclipse, like for example the
antenna mount GUI or the ACS command
center, showing that Eclipse is a very

powerful and convenient development platform.
Other engineering user interfaces have been implemented in Python.
Some non-ALMA projects are also interfacing ACS to GUIs developed in C++ using the Qt libraries.

Even prototypes with LabView interfacing ACS Components have been implemented.
This means that, while we strongly support GUI development in Java, in particular with the ABeans

framework, other solutions are possible and are being exploited by different teams because ACS can
be interfaced with any code written in Java, C++ and Python. The main reason for selecting something
different from Java is previous experience with other languages or libraries, but this can speed up
significantly GUI implementation for expert developers.

BENCHMARKING AND BENCHMARKING TOOLS
ACS has to satisfy strong performance requirements to allow ALMA and the other projects to run

properly. More over, changes to the code and the upgrade of external libraries can have heavy and
often unexpected impact on performance.

Now that ACS is in an advanced development stage and we have already operational environments it
is essential to have means to verify the performance and to keep track of how it changes over time. We
have realized that it is important to have a set of standard performance tests that are repeated in similar
conditions at each release and compared with historical records.

The ACS Performance Measurement framework was created as a means to determine the
performance limitations of various ACS APIs. This includes very low-level tests such as determining
how many method invocations can be invoked on a component per second to more abstract tests such
as determining how long it takes to start the core of ACS.

The framework has been created in such a way that not only is it useful to ACS, but it can be used by
other ALMA software subsystems to build their own benchmarks.

It consists of:
• “Profiler” objects in C++, Java, and Python. These profilers are essentially stopwatches that

obtain interesting data about a particular block of code.
• A wrapper script which profiles entire executables.
• A report generator which turns the raw output from the profilers into human-readable HTML

reports (http://www.eso.org/~almamgr/AlmaAcs/Performance/BenchmarkDoc/).
We have created and maintained benchmarking tests for the Component to Component
communication, Bulk Data Transfer API, Notification Channel Publishers, the Logging System and
Makefile performance just to name a few.

Figure 3: ACS tools and user interfaces

FUTURE DIRECTIONS OF DEVELOPMENT
The core of ACS is by now very stable, both in terms of design and implementation.
Most packages are available, but not all features foreseen in the architecture have been implemented.

Our main objective is to provide at each release what is needed by the subsystem development teams
and our release planning is the result of a trade-off between urgent requirements and the need to “fill
the holes”.

Clearly, for many of the features not jet implemented the time of need is coming. Therefore with the
next releases we plan to work on them.

Many are in areas related to performance and scalability, since ALMA will have to go from the 2
antennas of the test interferometer to the 64 of the final system and from the one operation site of the
tests to a very distributed network with the mountain site, the operation center and regional data
centers. For example, we have to work on some aspects of federation of ACS domains (already
available as prototype) that have to allow scaling up ACS applications to systems running reliably
across several sites and continents.

A lot of input is also coming now from the ALMA Integration and Testing activity. From them we
are getting requests and feedback in the areas of deployment, administration and debugging tools and
facilities.

Looking in another direction, we want to make nicer and easier the work of developers, providing
more abstract ways to implement the architecture and the code of the Components. Together with the
ALMA High Level Analysis team we think that code generation from UML will be able to relieve the
programmers from a lot of code editing, since a big part of the Component’s code can be easily
generated. Actually other projects using ACS have successfully used Component’s code generation
from CORBA IDL in the context of their specific system. We follow these developments with great
interest.

THE ACS USERS COMMUNITY
ACS is publicly available under LGPL licence, because we think that a wide community of users can

provide excellent feedback and help us to have a solid system for ALMA.
There are a number of projects that have decided to base their system on ACS, like the Atacama

Pathfinder Experiment, the Spanish OAN 40 meters radio telescope[8], the Sardinian Radio Telescope
in Italy, the Hexapod Telescope in Chile or the ANKA Synchrotron in Germany[10]. Other projects are
evaluating this possibility.

The community is very active. The Component/Container model allows different projects to share
Components and we have created code sharing areas. The possibility of sharing solutions is a major
driver in choosing ACS, in particular for projects in the same domain.

Discussions take place on a mailing list and we have periodic phone meetings and workshops.

CONCLUSION
ACS is at half of its development life and it has been used extensively for the development of ALMA

and of other projects. We can therefore start evaluating the benefits and the drawbacks.
ALMA is a highly distributed development and a pot of software cultures, with more than 20

development sites in 4 continents. Using a common software framework is essential to create a
coherent system. This increases maintainability and facilitates integration and testing activities.

On the other hand, this means imposing a way of working, technologies and tools that might be alien
to development teams with a different culture and engineering tradition.

The teams involved in “global activities” (like high level analysis or integration) see immediate
advantages. Smaller subsystem teams feel sometimes more the constrictions in their freedom of design
than the advantages, if they were not used to this development process from previous projects. We
have to put high priority in demonstrating also to these groups the added value they get, trying to make
the overhead as small as possible and listening to the feedback. This is why the planning of each ACS
release is discussed and agreed with all ALMA subsystems and based on their requests.

For project management this is an investment for the future, when the whole software will be handed
over to the support team. Already now it is a big advantage that during the system tests the integration
team can look into and understand the software of all subsystems.

For other projects, in particular if small and with limited resources, adopting ACS provides a bit start
jump and the learning curve is compensated by using a solid system and having access to a wide and
experienced community, willing to share solutions.

In this paper we wanted to give a flavour of the recent development of ACS, trying to describe the
reasons and the different forces driving the technical choices. The interested reader will find
architecture, design and reference documentation in the ACS Web pages[11].

ACKNOWLEDGEMENTS
The ACS project is managed by ESO in collaboration with NRAO, University of Calgary, Cosylab

and INAF-AOT. The ACS development team is actually distributed across many institutes involved in
ALMA development. This work is the result of many hours of discussion, test and development inside
our groups and in the various ALMA centers. We thank all our colleagues in ALMA and in other
projects using ACS for their important contributions to the definition and implementation of ACS.

REFERENCES
[1] G.Chiozzi et. al, “The ALMA Common Software (ACS): status and developments”,

ICALEPCS’2003, Gyeongiu, Korea, October 2003.
[2] K.Zagar et. al, “ACS – Overview of technical features”, ICALEPCS’2003, Gyeongiu, Korea,

October 2003.
[3] G.Chiozzi et al., “The ALMA Common Software: a developer friendly CORBA based

framework“ SPIE 2004 - Astronomical Telescopes and Instrumentation
Glasgow, Scotland, UK, June 2004, paper 5496-23

[4] H.Sommer et al., “Container-component model and XML in ALMA ACS”, SPIE 2004 -
Astronomical Telescopes and Instrumentation, Glasgow, Scotland, June 2004, paper 5496-24

[5] B.E. Glendenning, G. Raffi , “The ALMA Computing Project – Update and Management
Approach”, ICALEPCS’2005, Geneva, Switzerland, October 2005

[6] A. Farris et. al., “The ALMA Telescope Control System” , ICALEPCS’2005, Geneva,
Switzerland, October 2005

[7] D. Fugate et al., “A generic software interface simulator for ALMA common software” ,
ICALEPCS’2005, Geneva, Switzerland, October 2005

[8] P. de Vicente et al., “Development of the control system for the 40m radio telescope of the
OAN using the Alma Common Software” , ICALEPCS’2005, Geneva, Switzerland, October
2005

[9] P. Di Marcantonio et al., “Transmitting huge amounts of data design implementation and
performance of the bulk data transfer mechanism in ALMA ACS” , ICALEPCS’2005, Geneva,
Switzerland, October 2005

[10] I. Križnar et al., “Migration from ACS 1.1 to ACS 4 at ANKA” , ICALEPCS’2005, Geneva,
Switzerland, October 2005

[11] ACS Web page, http://www.eso.org/projects/alma/develop/acs/
[12] Open ArchitectureWare project home page: http://sourceforge.net/projects/architecturware/
[13] D. Fugate, “A CORBA event system for ALMA common software“”, SPIE 2004 -

Astronomical Telescopes and Instrumentation, Glasgow, Scotland, June 2004, paper 5496-24
[14] S.D.Huston, J.CE Johnson, U.Syyid, The ACE Programmer's Guide: Practical Design

Patterns for Network and Systems Programming, Addison Wesley.
[15] K.Sigerud, N.Stapley, M.Misiowiec, T.Zygula, “First operational experience with LASER”,

ICALEPCS’2005, Geneva, Switzerland, October 2005
[16] I.Verstovsek et al., “Java Abeans: Application Development Framework for Java”, ICALEPCS

2003, Gyeongju, Korea, October 13-17, 2003
[17] RTAI Web page. http://www.rtai.org/
[18] S.Harrington et al., ACS as the framework for integrating offline data reduction in ALMA,

ADASS XV, San Lorenzo de El Escorial, Spain, October 2005

