
A GENERIC SOFTWARE INTERFACE SIMULATOR FOR ALMA

COMMON SOFTWARE

D. Fugate1, G. Chiozzi2, A. Caproni2, B. Jeram2, H. Sommer2, S. Harrington3
1University of Calgary, Calgary, Alberta, Canada, 2European Southern Observatory, Garching,

Germany, 3National Radio Astronomy Observatory, Socorro, New Mexico, United States of America

ABSTRACT
The generic software interface simulator framework for Atacama Large Millimeter Array (ALMA)

Common Software (ACS) provides ALMA developers with an easy means to create and configure the
behaviour of interfaces that have been defined using Common Object Request Broker Architecture
(CORBA) Interface Definition Language (IDL). ACS consists of a set of application frameworks built
on top of CORBA and provides the glue which binds other ALMA software subsystems together [7].
In short, ACS provides an implementation of the component-container design pattern via CORBA.
Using the simulation framework, one can choose to predefine the behaviour of a simulated component
by embedding simple Python commands within a section of the XML-based ACS configuration
database (CDB). The option to configure simulated components’ behaviour at run-time is also a
possibility using a provided graphical user interface (GUI) or application programming interface (API)
executed within the context of an interactive Python session. Additionally, if the means above have not
been utilized to setup the components’ behaviour the framework will dynamically provide an
implementation of the entire component with a randomized behaviour. This framework is especially
useful to ALMA developers for two reasons. On one side it allows developers to test their own
component, which is dependent upon other types of components that have been defined via IDL
interfaces, but not yet implemented. On the other side this tool has proven itself to be quite valuable
because it allows developers to connect clients such as graphical user interfaces to (simulated)
components encapsulating hardware devices. Not only can the physical hardware devices be absent in
this type of scenario, but the software representing the hardware need not be available either. The end
result here is that clients and components can be developed and tested in parallel completely
independent of each other. This paper discusses the design, implementation, and current usage of the
simulator framework within ALMA software as well as future improvements to be made.

INTRODUCTION
ALMA is an international project to build the largest and most sensitive millimetre wavelength

telescope in the world at Llano de Chajnantor, Chile.

ALMA Common Software

ACS is a software infrastructure for the development of distributed systems based on the
component/container paradigm and also includes general-purpose utility libraries [4]. ACS is being
developed primarily for the ALMA collaboration to provide a common and unifying infrastructure
used by all partners and across all layers of the system. The usage of ACS extends from high-level
applications such as the Observation Preparation Tool that will run on the desks of astronomers down
to the Control Software domain. From a system perspective, ACS provides the implementation of a set
of design patterns and services that make the whole ALMA software uniform and maintainable. From
the perspective of an ALMA developer, it provides a friendly programming environment in which the
complexity of the CORBA middleware and other libraries is hidden and coding is drastically reduced.

Component/Container Background

As mentioned previously, ACS is based on the component/container design pattern [5]. For those
unfamiliar with the component/container model, it’s defined as follows: a component is a piece of
software that “lives” within a container yet is decoupled from the container. The container manages
the lifecycle of components and provides them with a set of common container services. Examples of

the component/container design pattern are Enterprise Java Beans (EJB), CORBA Component Model,
and Microsoft .Net technologies.

The ACS group has implemented this model entirely in CORBA using IDL and provides a complete
implementation of the container. Additionally, ACS has implemented a base component interface
leaving other ALMA developers to simply extend this, adding methods useful to what they’re doing
along the way. These ACSComponent-derived IDL interfaces make up the core of ALMA software
functionality and are shared between subsystems. As an all too brief example, one container deployed
on a PC could have a scheduler component used to schedule observations and an antenna mount
component used to move the antenna within it:

Figure 1: High-level overview of the ACS container/component model within ALMA software

SIMULATOR NECESSITY
In September 2003, during the normal ALMA software review process, we came to the conclusion

that it was necessary to make available to the subsystems a simulation framework. The main reason for
this was to support the Integration, Testing, and Support (ITS) team, responsible for the periodic
release of the integrated ALMA software. Essentially our development is iterative and at any
intermediate integration some pieces of code contributed by the various subsystems are only partially
implemented. It also happens that the intermediate code does not perform according to specifications.
It is therefore very difficult to get the integrated (but partial) system working. It is also very difficult to
identify the subsystems responsible for bugs and work around them to proceed with the integration
tests. It would have been much quicker to get the complete system exercised if the capability to fake
the missing software functionality existed.

Due to the fact that only IDL interfaces can be seen by clients of components and not the actual
implementations, we concluded that the most effective means of simulation for ALMA is at the
component level. That is, it should be possible to specify to the container that the implementation for a
given component is a simulated component factory. Also, because of the very nature of CORBA and
IDL interfaces, clients using the component will never know they are not using the real deal.
Component implementations are hot-swappable within the ACS framework.

REQUIREMENTS
During the ACS development cycle in which the simulator framework was created, concrete

requirements came in and these were incorporated into the design:
• The simulator must be able to generate complete implementations of all IDL methods and

attributes without input from the end-user.
• Enumerations, used largely by the Control subsystem to specify hardware states, will be fully

supported.
• If an interface defines a CORBA Object attribute or a method that returns a reference to another

CORBA Object, the simulator should then create the CORBA Object and be responsible for its
lifecycle. Nil references are unacceptable.

• A simulated component should behave in the same manner as a real component. That is,
simulated components shall have access to the container services and implement the non-IDL
lifecycle methods. Additionally the simulator should take advantage of real object
implementations where applicable.

• Users will have the option to specify a timeout value for methods. When the simulated method is
invoked it will sleep for a period of time defined by the timeout and then return control.

• Read/write attributes should have some form of “memory” to store the value in if it is being set.
• It may be necessary to simulate the crashing of a component.
• A GUI shall be implemented allowing developers to set return values, timeouts, etc. for each

attribute a component defines. If the developer does not set these parameters via the GUI, the
infrastructure should then search the ACS CDB and if the values cannot be found there either,
they will be generated on the fly.

• The GUI will be a dumb client for all intensive purposes. In other words, the intelligence of the
simulation will reside in an API available to developers and the GUI will just make requests of the
API. This will be used to facilitate the simulator’s use in modular tests.

PRELIMINARY DESIGN
There were quite a few possibilities that were tossed around during the initial design phase of the

simulator. While none of these proposals could meet the demands of ALMA on their own, the final
design ended up being a melting pot of the following concepts:
• The simulator would be more of an interactive IDL interface compiler than anything else. In this

way, the implementation of the ACS container would not have to be changed and a so-called
simulated component would behave identically to real components. The downside is the
developer would be constantly harassed with questions like, “what values should the ‘xyz’ method
return”. The simulator could also try to predict reasonable return values on its own.

• The developer would run the container interactively and manually set the return values for all
component attributes/methods to be simulated. The main thing this has going for it is complete
control over each simulated implementation and even the ability to dynamically change what
methods do. The simulator/container could even be setup to import a user-defined module from
the command-line which sets these automatically at start-up. The upside to this is minimal time is
required to implement it. It would not even be necessary to subclass the CORBA skeleton classes
because Python has some very useful functions for dynamically attaching methods to classes (the
“new” package). It might even be possible for the end-user to simply invoke a function like
defineMethod(MOUNT_ACS_POA.Mount, “moveAntenna”, “return 1.23”) meaning the
moveAntenna method of the Mount IDL interface returns a constant double value.

• A subclassed container would be used which does all of the work for the developer. It would read
a string from the ACS CDB to evaluate each method/attribute and return that. The output of

methods would almost certainly have to be static. Not as flexible as the previous two alternatives,
this would be most user-friendly.

Decision to use Python

Since the simulator should be able to emulate components where the interfaces are not known ahead
of time, a dynamic programming language seems like the logical choice for the implementation.
Python is both dynamically scoped and typed, supports dynamic inheritance, and most importantly
allows developers to dynamically redefine methods at run-time. ACS already provides a Python
container which makes Python the ideal language for the simulator’s implementation.

FINAL DESIGN
The final design for the simulator ended up being a combination of the three main contenders

yielding an extremely powerful framework. In short, the accepted design allows developers to
configure the behaviour of simulated components in four different ways – completely self-
implementing components, configuration files found in the ACS CDB, a GUI, and an API. It has some
of the following characteristics:
• Using the CORBA IDL Interface Repository (IFR), a CORBA service which stores and retrieves

IDL, it is possible to accurately create method return values for the developer without their input.
• The Python container can be executed from an interactive Python session. This implies the

developer can swap out entire method/attribute implementations with ease.
• Instead of simulating components at the interface level where all component instances of a given

IDL type behave identically, we simulate at the named component instance level. This means that
each simulated component of a given type can be configured to behave uniquely which is
different from the three proposals.

• Using native Python methods, it is possible to dynamically create the implementation of any IDL
interface. This implies simulation could indeed occur at the component level without making
modifications to the container.

• Using native Python methods, it’s possible to read method/attribute return values in the form of
XML strings from the ACS CDB.

Configuration Database

The usefulness of defining simulated component behaviour before run-time is especially important
for an extremely complex software system such as ALMA. For example, perhaps the end-user wants
to find out what happens when the return value of some method is fixed. Productivity may be
hampered because of the time spent changing return values each time the simulated component is
created. For reasons like this, the characteristics of a simulated component can be retrieved from the
ACS CDB if the user does not explicitly set them by some other means. The CDB entries are placed in
the /alma/simulated/ section. The current implementation of the XML schema describing simulated
components allows setting method timeouts among other things.

Application Programming Interface and Graphical User Interface

At times it can be quite useful to change the behaviour of a simulated method or attribute at run-
time. For example, a regression test can require testing the client of a component with many possible
return values for the same call performed. We therefore need a way to instruct the simulated
component to behave in a specific, but different way for each call received by the client being tested.

This is possible by running the ACS Python container within an interactive Python session and then
manipulating the component(s) with an easy-to-use API. The API methods provided are generally in
the format setXyz where Xyz is some configurable data. Some of the configurable items are:
• A standard timeout for all methods and attributes dynamically implemented by the framework
• The maximum sequence size for CORBA sequences
• Associating a new timeout, function to be executed, etc for a particular component’s method or

attribute

This API is also used by a GUI which is spawned by the first simulated component started within a
container. The purpose of the GUI is to make the API much simpler to use for end-users who
potentially have no programming background.

Self-implementing Components

Last but definitely not least, a simulated component will implement its own methods and attributes
completely autonomously if the end-user fails to utilize any of the other three mechanisms to modify
the behaviour of simulated components.

Figure 2: Diagram depicting how simulated components function within a container

RESULTS
The simulator framework is currently being used by a few ALMA subsystems. The Executive team

is working on creating an operator GUI which in turn is a client of many different components created
by other ALMA subsystems. The problem Executive is experiencing is that while all of the IDL
interfaces describing these components have been implemented, the components themselves have not
been completed. In situations like this, the simulator is proving itself to be an invaluable tool. A few
other groups have begun using the simulator as well, with the primary use intended to be decoupling
their modular tests from the implementations of components provided by other subsystems.

CONCLUSIONS

Overview from a User’s Perspective

From an end-user’s point of view, the simulator can be downright trivial or fairly complicated to use
depending upon the functionality desired. Right out of the box, all one has to do is modify a
configuration file describing the component to say it will exist within a Python container and then
change the implementation library name to that of the simulator component factory. Simply
performing the steps listed above gives the user access to a component which automatically
implements all methods its interface defines and returns fairly reasonable values. For those demanding

a more realistic simulation, they can provide their own logic in the form of XML configuration files or
input this information at run-time using the GUI and/or API.

This approach makes it very easy to implement simple behaviour, but we have seen from our users
that there are many cases where we have complex simulation needs. For example, we might need to
link the value of attributes to the current value of other attributes. Consider the right ascension and
declination in the sky of a telescope; they depend on the azimuth, elevation and time. Implementing
these and more complex relations with snippets of Python code embedded in the XML definition files
is rather complex and difficult to debug. The main request from our community is to make such
complex simulations easier to implement.

Future Improvements

There have been a number of proposed enhancements for the simulator that are currently being
implemented. First, most people will agree the framework’s major shortcoming is that the XMLs do
not support complex Python language constructs such as loops. End-users choosing to utilize the CDB
are limited to very simple Python operations and code that depends upon the orientation of white space
is out of the question. Support for this will be added with the release of ACS 5.0 this Fall and we will
also include the capability of adding methods to the simulated component from the CDB. Aside from
what’s mentioned above, the following improvements will be made:
• Sophisticated support for receiving/sending events will be added
• An area in the CDB will be added in which users can define XMLs defining the behaviour of all

IDL interfaces of a given type

REFERENCES
[1] OMG. “CORBA 3.0.” IDL Syntax and Semantics. May 26, 2005.

<http://www.omg.org/technology/documents/formal/corba_2.htm> (15 September, 2005).
[2] OMG. “CORBA 3.0.” Interface Repository. May 26, 2005.

<http://www.omg.org/technology/documents/formal/corba_2.htm> (15 September, 2005).
[3] Beazley, David. Python Essential Reference. Indianapolis: New Riders, 2001.
[4] G.Chiozzi. ALMA Common Software: a developer friendly CORBA based framework. Paper

5496-23. Glasgow, Scotland: SPIE, 2004.
[5] H.Sommer. Container-component model and XML in ALMA ACS. Paper 5496-24. Glasgow,

Scotland: SPIE, 2004.
[6] D.Fugate. A CORBA event system for ALMA Common Software. Paper 5496-68. Glasgow,

Scotland: SPIE, 2004.
[7] G.Chiozzi. ALMA Common Software (ACS): status and developments. Geneva, Switzerland:

ICALEPCS, 2005.

