
STUDY OF PORTABILITY OF VLT INSTRUMENTATION
SOFTWARE TO ACS

Roberto Cirami, Paolo Santin, INAF-OAT, Trieste
Gianluca Chiozzi, Antonio Longinotti, ESO, Garching bei Muenchen

The Very Large Telescope (VLT) will remain in operation most probably for at least two more decades. Being the software technology currently used at the VLT more than one decade old, the maintanability of such a complex sys-
tem might become a critical issue. The ALMA Common Software (ACS) is based on newer technology. Following this consideration, one of the obvious options to improve the maintainability of the VLT Software would be to 
port it, or parts of it, to ACS. This would allow optimizing maintenance resources for both VLT and ALMA Software, eventually making available resources for new ESO projects, such as E-ELT. Because of operational constraints, 
this can only be achieved gradually, possibly starting with new VLT sub-systems. In the year 2004 a pilot project has been started to study the effort needed to replace standard components of the VLT Instrumentation Software 
with ACS based ones. Starting from a simple instrument created from the VLT Template Instrument and entirely based on the VLTSW, the core of the Observation Software (OS) has been replaced with an ACS based equivalent.

References
• “VLT template Instrument User Manual”, VLT-MAN-ESO-17240-1973, Issue 5, January 2005
• G. Chiozzi et al., “The ALMA common software: a developer friendly CORBA-based framework”, Proc. SPIE Vol. 5496-23, Astronomical Telescopes and Instrumentation, 
Glasgow, June 2004
• ACS Web page, http://www.eso.org/projects/alma/develop/acs
• VLT Web page, http://www.eso.org/projects/vlt

Conclusions
Concerning the initial requirements, the conclusions for each evaluation criteria are:
• Reusability. A generic, totally application-independent VLT Wrapper has been implemented. This Wrapper can be used with any ACS application, as long as it implements its interface protocol.
• Accessibility. Any ACS application can access the VLT OLDB functionality using the OLDB interface. The VLT error stack is automatically included in an ACS error by the VLT Wrapper and passed back to the ACS application. The VLT 
message system is used by the VLT Wrapper to communicate with the VLT subsystems, hiding its use to the ACS application.
• Compatibility. The ACS prototype behaves in the same way as the VLT original application (with reduced functionality).
• Efficiency. Thanks to the huge amount of available common Software and templates, the development time in the present VLT environment is much faster. A correct and fair comparison should however be done between the current ACS 
status and the VLTSW before the VLT first light. If we make this comparison, it is our opinion that in absolute terms the code production in the ACS context is much more flexible and effective.
• Performance. By running a simple test OB, no substantial differences in performance have been measured between the full VLTSW implementation and the final ACS based prototype. However, due to the simplicity of the prototype, this 
cannot be considered a complete comparison between the two implementations in terms of performance.

Requirements
The initial requirements have been formulated as prototype evaluation criteria:
• Reusability. It must be possible to interface with a minimum effort and (almost) no specific coding an existing VLT application 
to an ACS based one, using a generic VLT Wrapper.
• Accessibility. Any ACS application should be able to access the VLT On-Line database (OLDB) functionality, receive a VLT error 
stack and interface with the VLT message system, using code produced for the prototype, without having to write specific code.
• Compatibility. The ACS based parts of the prototype must produce the same results as 
the initial pure VLT implementation.
• Efficiency. A comparison of the effort needed to produce some functionality (e.g. OS 
main functionality) within the VLT environment and ACS shall be done. A comparison of 
the two learning curves is desirable.
• Performance. An evaluation of performances between the VLT and the ACS version of 
the prototype instrument will be done (e.g. how long it takes to execute a self test).

Design
An ACS-based OS prototype has been implemented following the Com-
ponent/Container paradigm adopted by ACS. This OS, being embedded 
in a VLT environment, receives pure VLT commands (e.g. from the Bro-
ker for Observation Blocks, BOB) and forwards them to different subsys-
tems/applications, either VLT or ACS-based ones. A VLT Wrapper allows 
forwarding the commands to VLTSW based subsystems. For the proto-
type, a new VLT software instrument has been created starting from the 
XXXX template instrument, which contains three VLT subsystems (ICS, 
FIERA1 and FIERA2). All the replies as well as any error coming from the 
VLTSW based subsystems are managed by the prototype.
For the prototype implementation the following software releases have 
been used:
• VLTSW JAN2006
• ACS 5.0.2

BOB
COMMAND

DISPATCHER

START

SETUP

WAIT

...

ACS

SUBSYSTEMS

ICS

FIERA 2

FIERA 1

SUBSYSTEMS
VLT

V
L
T

W
R
A
P
P
E
R

VLT VLTACS

START

START

START

Command Dispatcher
The Command Dispatcher is implemented as an 
ACS Characteristic Component. It receives pure 
VLT commands and activates dedicated ACS Char-
acteristics Components (Command Components) 
for each received command (e.g. SETUP, START, 
WAIT, …). The correspondence between the VLT 
command and the related Command Component is 
specified as a CDB (ACS database) entry of the Com-
mand Dispatcher and stored as an internal map. The 
Command Dispatcher contains an ACS callback for 
managing the VLT replies.

baci::CharacteristicComponentImpl

-mapCMD : map<string,string>
...

-commandCB()
...

CmdDispatcherImpl

CmdDispatcherCbImpl

POA_ACS::CBstring

ACS-Based OS (Command Components)
In the prototype, the pure VLT OS is replaced by an ACS-based OS. It is 
represented by the whole set of Command Components, corresponding 
to the commands specified in the Command Definition Table (CDT).
Each Command Component inherits from a common base class which 
implements common methods and provides the ACS callback needed 
for managing the ACS/VLT replies. Each Command Component im-
plements a well defined common interface. This interface, called by the 
Command Dispatcher in response to an incoming VLT command, im-
plements the logic specific to each command (e.g. for the START com-
ponent it splits the incoming command into START commands to be 
forwarded to the specific VLTSW based instrument subsystems, etc.), 
and forwards the command to the ACS or VLT subsystems.

baci::CharacteristicComponentImpl

VLTCommandCbImpl

-vltCmd_p : VLTCommandImpl*

VLTCommandImpl

+commandExecute()
...

StartImpl

+commandExecute()
...

SetupImpl

+commandExecute()
...

POA_ACS::CBstring

VLT Wrapper
The VLT Wrapper represents a layer between the ACS part of the prototype (Command 
Dispatcher and Command Components) and a pure VLTSW based subsystem. The VLT 
Wrapper exposes a well specified interface to the ACS part of the prototype. This interface 
is called by the Command Components and forwards the specific command to the differ-
ent VLT subsystems (ICS, FIERA1, FIERA2). To communicate with the VLT subsystems 
the VLT Wrapper uses the VLT message/error systems. Internally, the Wrapper manages 
the VLT subsystems replies and errors, and communicates with the ACS callback of the 
Command Components.
The VLT Wrapper is totally application-independent. Any ACS application can use the 
VLT Wrapper to communicate with VLTSW based subsystems provided it uses its inter-
face.

baci::CharacteristicComponentImpl

VLTWrapperImpl

-cbstrVLTCmd : ACS::CBstring*
...

-commandErrReplyCB()

+commandForward()
-commandReplyCB()

...


