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Abstract 
In the scope of the evaluation of architecture and 

technologies for the control system of the E-ELT 
(European-Extremely Large Telescope) instruments, a 
collaboration has been set up between the Instrumentation 
and Control Group of the INAF-OATs and the ESO 
Directorate of Engineering. The first result of this 
collaboration is the design and implementation of a 
prototype of a small but representative control system for 
an E-ELT instrument that has been setup at the INAF-
OATs premises. The electronics has been based on PLCs 
(Programmable Logical Controller) and Ethernet based 
fieldbuses from different vendors but using international 
standards like the IEC 61131-3 and PLCopen Motion 
Control. The baseline design for the control software 
follows the architecture of the VLT (Very Large 
Telescope) Instrumentation application framework but it 
has been implemented using the ACS (ALMA Common 
Software), an open source software framework developed 
for the ALMA project and based on CORBA middleware. 
The communication among the software components is 
based on two models: CORBA calls for command/reply 
using the client/server paradigm and CORBA notification 
channel for distributing the devices status using the 
publisher/subscriber paradigm. The communication with 
the PLCs is based on OPC UA, an international standard 
for the communication with industrial controllers. The 
results of this work will contribute to the definition of the 
architecture of the control system that will be provided to 
all consortia responsible for the actual implementation of 
the E-ELT instruments. This paper presents the prototype 
motivation, its architecture, design and implementation. 

INTRODUCTION 
  The mock-up instrument, to be controlled, is a kind of 

multi-object (optical) spectrograph composed by the 
following main subsystems and components: 
• One spectrographic arm with an ADC (Atmospheric 

Dispersion Corrector) and a dedicated CCD; 
• One imaging arm with a filter wheel and a dedicated 

CCD; 
• One calibration system equipped with a simple 

on/off lamp (e.g. Thorium-Argon lamp) and one 
characterized by a warm-up time required to reach 
the necessary stability (e.g. Deuterium lamp). 

The skeleton of this prototype is based on a real 
astronomical spectrograph that is being built at INAF-
OATs premises and is representative of the components 
that we expect to be part of a real E-ELT instrument. 

FUNCTIONAL REQUIREMENTS 
A detailed set of requirements is a starting point to 

produce both adequate software and electronic 
architecture design. For our specific prototype we reused 
the work done both by ESO and INAF-OATs as part of 
the studies for the E-ELT Phase A instruments. Dedicated 
use cases were developed covering aspects like 
system/instrument start-up, simulation levels, handling of 
logs and errors, and, typical of an astronomical 
instrument, handling of the acquisition, observation and 
calibration phases. 

We have reused, moreover, some successful paradigms 
employed in the VLT software instrumentation 
framework ([1] and reference therein) applying the 
experience gained during the software development for 
the VLT instruments.  

Command/Reply 
Sub-systems and, in general, devices of the system 

respond to commands (e.g. SETUP) which execute 
specific actions. Each command is composed by a string 
made up of one or more keywords (in FITS-like format) 
and parameters chained together (e.g. INS.FILT1.NAME 
U). Each keyword specifies the subsystem and device the 
message is addressed to. 

State Machine 
Devices and components needed to operate the 

prototype follow the typical VLT state machine. The 
states implemented are: OFF (not running), LOADED 
(started-up), STANDBY (software initialized), ONLINE 
(hardware initialized) [1]. 

Parallelism 
Operations in our prototype are executed in parallel. At 

the device level this means that all devices are capable of 
moving in parallel to spare time and minimize 
initialization procedures. At the higher level (i.e. 
interaction with the user) it means that the corresponding 
sub-system does not block upon receiving a request. 

SOFTWARE ARCHITECTURE 
The baseline design for the prototype Control Software 

architecture follows a VLT-like approach [1]. Several 
blocks/packages constitute the overall architecture and 
could be summarized as follows: 
• Low-level control package (identified as ICS – the 

Instrument Control Software), responsible for 
handling the vital part of the prototype (motorized 
devices and lamps in our case); 
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Figure 1: Mock-up prototype software architecture. 

• High-level control package (identified as OS – the 
Observation Software), responsible for the 
coordination of activities of the detectors, low-level 
part and the telescope; 

• Detector Control Software (DCS), responsible for 
controlling/handling all detectors. 

We decided to use the ALMA ACS framework [2] as 
the infrastructure software to build our mock-up prototype 
instrument control software. The reason of this choice is 
essentially twofold:  
• to use a modern, fully fledged, application 

framework to speed-up the prototype implementation   
• to evaluate ALMA ACS complexity (learning curve), 

completeness, performance and ease-of-integration 
with other technologies in a view of its possible 
usage inside the E-ELT project. 

The ACS philosophy is to model the system as a set of 
collaborating components located inside one or more 
containers contrary to the VLT case where the various 
software packages are implemented as a set of standalone 
processes. 

Figure 1 shows the final prototype architecture. It is just 
a schematic picture and does not show all the involved 
entities (e.g. call-backs, threads). A GUI/test program 
sends a command to OS, which forwards it to the 
involved subsystems. Then the subsystem (at present ICS 
or DCS) sends the command to the appropriate devices. 
In the case of ICS, the connection between the ACS 
Components (LAMP or MOTOR) and the hardware 
(Beckhoff or Siemens PLCs) is realized through the OPC 
UA technology [3]. 

In the current version of the prototype the following 
C++ (ACS) Containers have been configured: 
• OSContainer 
• ICSContainer 
• DeviceContainer, which hosts the LAMP1, LAMP2, 

FILT1 and ADC1 ACS Characteristic components; 
• DCSContainer, which hosts the CCDIMAG and 

CCDSPECTRO ACS Characteristic components. 
The motivation of having (so many) different 

containers even though the system is quite simple is to 
model it as a highly-distributed system exploiting the 
great flexibility of the ACS Component/Container model. 
This will facilitate future modifications. For example, OS 
and ICS, first implemented in C++, have been in parallel 
implemented in Java and deployed on a dedicated Java 

Container, in order to assess the feasibility of using this 
language for high level coordination tasks. 

OS and ICS General Characteristics 
In this prototype, the bootstrap of the system uses ACS 

activation on demand: each component is activated 
automatically only when requested by another component 
or by a client. In this way, if there is a need to interact 
with a specific device it can be just connected to a GUI 
and the corresponding component will be started up. On 
the other hand, if there is a request to activate the top-
level OS, it will hierarchically activate ICS which in turn 
will be responsible to activate the needed devices. The 
ACS configuration database contains the needed 
deployment information. 

The system is designed and implemented to allow 
executing operations fully in parallel. At the sub-system 
level (ICS, OS, DCS), command/parameters pairs are 
received (using a standard SETUP-command syntax 
implemented via CORBA method invocation) and the 
corresponding operations executed. Operations are non-
blocking i.e. after checking the correctness of the received 
parameters the involved Component is free to accept new 
requests. At the OS level this is achieved via call-back 
mechanism. Before dispatching the incoming command to 
ICS or DCS, a call-back is instantiated and passed, 
together with the command, to the appropriate subsystem. 
In this way, it is responsibility of the involved subsystem 
to notify when the action has completed allowing OS to 
handle new requests. Once notified, OS propagates the 
answer back to the client (see Figure 2). 

At the ICS level, a multi-threading paradigm is used 
instead. Parameters are parsed and sent to the appropriate 
device using a dedicated thread. Parallel actions are 
handled by separate threads and a thread join is used as a 
rendezvous point when all actions are completed (see 
Figure 2). This allows ICS to receive new commands if 
required (e.g. an emergency STOP or a SETUP on 
different devices). 

The reason to use the call-back mechanism only at the 
OS level is due to the fact that OS (in principle) manages 
a limited number of sub-systems. Call-backs inside ACS 
are basically CORBA objects. They are therefore 
somehow “heavy” to activate and this could, at length, 
lead to some performance penalties.  
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Adopting these two different paradigms allowed us to 
compare the two options and to evaluate the easiness of 
their usage. The final impression is very positive: at the 
development level both paradigms are fully supported by 
ACS and also from performance point of view they 
behave as expected (see final section). 

 

 
Figure 2: Activity diagram (only ICS part is shown). 

The Java implementation for both OS and ICS 
components has been developed following for both cases 
the ICS multi-threaded architecture described above. This 
implementation has demonstrated that Java development 
is very convenient for these applications and has allowed 
us to demonstrate also the re-use of other system elements 
developed for ALMA (like the standard ALMA Master 
Component state machine or ALMA operator GUIs).   

Devices and OPC UA Standard 
Both ICS and DCS control hardware devices. 

Connection to the ICS PLC hardware is handled via OPC 
UA [3]. The OPC UA is a platform-independent standard 
through which various kinds of systems and devices can 
communicate by sending messages between clients and 
servers over TCP networks. In an OPC UA application 
we can usually find the following components: 
• a “server”, usually a thread on the process controller 

which exposes process data and methods that might 
run on another node and communicate with the 
hardware with proprietary protocols. It is supplied 
(typically) by the hardware manufacturer; 

• a “client” that, by means of APIs, implements the 
OPC UA communication stack and allows the user 
application to access the data and methods exposed 
on the “server” side. 

In the current prototype version the devices controlled 
by ICS are: 
• LAMP1 – a simple on/off device (mimic a true ThAr 

lamp) controlled physically by a Beckhoff PLC; 
• LAMP2 - a simple on/off device (mimic a true 

Deuterium lamp), with functionalities similar to 
Lamp1, but with a warm-up time i.e. the time that the 
lamp needs to reach full operative mode. Also this 
lamp is physically controlled by a Beckhoff PLC; 

• FILT1 – a filter wheel with certain number of 
discrete positions controlled physically by a Siemens 
PLC; 

• ADC1 – rotational device physically controlled by a 
Beckhoff PLC. 

DCS controls the following devices: 
• CCDImag – implements the interface to a Finger 

Lakes Instrumentation (FLI) CCD USB Camera.  
• CCDSpectro – implemented with dummy responses. 
We implemented our own OPC UA client inside the 

ACS by means of DevIO abstraction layer [2] using the 
OPC UA client provided by Unified Automation. The 
OPC UA SDK library is well wrapped inside just two 
classes: the first one implements all the steps that are 
necessary to correctly access (i.e. read, write, subscribe) a 
specific node through a DevIO interface; the second one 
handles all the connections/disconnections with the PLCs. 

Another project based on ACS [4] is now taking this 
implementation as a starting point for writing a similar 
implementation on Java. Once this will be done, we will 
retrofit this prototype with a Java implementation of 
Device, to verify if also this lower level control part can 
be implemented conveniently in Java.   

ELECTRONIC ARCHITECTURE 
One of the aims of the prototype has been to evaluate 

possible hardware technologies that in terms of 
performance and cost could be employed in the actual 
implementation of the E-ELT instruments. Following the 
description given in the preceding sections (usage of 
PLCs and communication through OPC UA standard) two 
complete hardware infrastructures have been set-up to this 
purpose at our laboratories: one based on Beckhoff 
TwinCAT SoftPLC platform and the other on Siemens 
S7-300 PLC platform. Specifically the Beckhoff system is 
a CX9000 family embedded system equipped with I/O 
modules (EL1002, EL1014, EL2004) and the AX5201 
servo drive able to control the AM3022 brushless 
synchronous servomotor. The Siemens system is a 
Compact CPU (CPU 314C-2 DP) equipped with the 
FM354 Servo Function module able to control a custom 
made DC drive used in ESO/VLT instruments.  

In the Beckhoff case, the PLC software has been 
derived from the code developed for the ESO/VLT 
PIONIER instrument and uses the Motion Control (MC) 
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library conforming to PLCopen IEC 61134-3 as interface 
to the motors. In the Siemens case, due to the lack of 
PLCopen compliant libraries (cost and compatibility with 
our current hardware layout is under evaluation), 
dedicated code has been developed based on the Siemens 
FM354_354 block library. Note that the same subset of 
process variables as the one used in the Beckhoff 
implementation were exposed making the two platforms 
fully and transparently interchangeable. This is for sure 
one of the major achievements of this project: the 
prototype has shown that thanks to the ACS DevIO 
abstraction layer and a clever usage of the OPC UA 
standard, the overall system is unaware of the employed 
underlying technology/vendor products. By only 
changing few (ASCII) configuration files, but without 
having to recompile high-level ACS Components code or 
changing GUIs, it has been possible to control 
motors/lamps using platforms of the two different vendors 
with the possibility to interchange them in a completely 
seamless way. For the E-ELT instruments this has a quite 
big impact; it means that it could be possible to change 
the underlying low-level technology (e.g. due to 
obsolescence) without affecting the high-level framework 
or vice-versa in fully transparent way. 

Performance 
Performance measurement has been done with a mock-

up for an ADC connected to the the Beckhoff platform. 
An ADC is a device able to compensate (counter-balance) 
the dispersion produced by the terrestrial atmosphere on 
the incoming starlight, composed by prisms that must be 
free to rotate. Their position depends on the celestial 
position of the object to be observed and must be 
therefore continuously updated. 

The performance test that has been carried on is 
relatively simple: within a thread (spawned by the ACS 
Component Device associated to the ADC), the new 
position is calculated (simulating a real astronomical 
object) and then two calls are made trough OPC UA. The 
first call updates the target position; the second triggers 
the actual movement of the motor. To try to reach the real 
limit of the system, no check is performed on the 
positioning by the high-level software. In the case the 
motor is still positioning while a new “move” request is 
triggered, the target position gets simply updated and the 
motor continues its movement.  

Measurements were made by time stamping, within the 
ACS code, when a thread is entered, before the first OPC 
UA call and at the thread exit. 

At the PLC level, a physical output was mapped to the 
“move” flag and then sampled with an oscilloscope. No 
other tools where accessing the PLC by network when the 
test was made. 

Analysis of these measurements shows that, as 
expected, most of the time is spent in the OPC UA 
communication (astronomical computation and thread life 
cycle management by ACS is negligible compared to the 
OPC UA calls). With our slow CX9010 system (consider 
that this is the cheapest Beckhoff CPU family able to run 

an OPC UA server) and a 10 ms PLC cycle the average 
time between two consecutive thread call is of the order 
of 80 ms as confirmed also in Figure 3 by an oscilloscope 
screen capture. 

 
Figure 3: oscilloscope screen capture. Average time 
between two successive “move” commands is of the order 
of 80 ms. 

Results can be certainly improved using a more 
performing CPU family (e.g. CX1030), but the actual 
measurements confirm already now that our (relatively) 
cheap hardware system connected to the ACS framework 
through OPC UA  is able to sustain cycles of the order of 
10 Hz which is well within the requirements asked for our 
applications. 

CONCLUSIONS 
The main outcome of our work is that the selected 

technologies fulfil the imposed requirements and are 
feasible alternatives to implement instrument control 
software for the E-ELT. ACS strong points are for sure 
the Component/Container paradigm, the transparent 
managing of the Component lifecycles, the DevIO 
interfaces and the various services offered by the 
framework which ease implementation (e.g. threads).  

The major strength in using OPC UA is the transparent 
hardware management. Measurements show that 
performance achieved at the communication level are 
within specification for most astronomical requirements 
and therefore OPC UA, in perspective, could be further 
evaluated as an appealing technology to be employed for 
the future E-ELT instruments. 
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