
EVALUATION OF SOFTWARE AND ELECTRONICS TECHNOLOGIES
FOR THE CONTROL OF THE E-ELT INSTRUMENTS: A CASE STUDY

P. Di Marcantonio#, R. Cirami, I. Coretti, INAF-OATs, via G.B. Tiepolo, 11, I-34143, Trieste, Italy
G. Chiozzi, M. Kiekebusch, ESO, Garching bei Munchen, 85748, Germany

Abstract
In the scope of the evaluation of architecture and

technologies for the control system of the E-ELT
(European-Extremely Large Telescope) instruments, a
collaboration has been set up between the Instrumentation
and Control Group of the INAF-OATs and the ESO
Directorate of Engineering. The first result of this
collaboration is the design and implementation of a
prototype of a small but representative control system for
an E-ELT instrument that has been setup at the INAF-
OATs premises. The electronics has been based on PLCs
(Programmable Logical Controller) and Ethernet based
fieldbuses from different vendors but using international
standards like the IEC 61131-3 and PLCopen Motion
Control. The baseline design for the control software
follows the architecture of the VLT (Very Large
Telescope) Instrumentation application framework but it
has been implemented using the ACS (ALMA Common
Software), an open source software framework developed
for the ALMA project and based on CORBA middleware.
The communication among the software components is
based on two models: CORBA calls for command/reply
using the client/server paradigm and CORBA notification
channel for distributing the devices status using the
publisher/subscriber paradigm. The communication with
the PLCs is based on OPC UA, an international standard
for the communication with industrial controllers. The
results of this work will contribute to the definition of the
architecture of the control system that will be provided to
all consortia responsible for the actual implementation of
the E-ELT instruments. This paper presents the prototype
motivation, its architecture, design and implementation.

INTRODUCTION
 The mock-up instrument, to be controlled, is a kind of

multi-object (optical) spectrograph composed by the
following main subsystems and components:
• One spectrographic arm with an ADC (Atmospheric

Dispersion Corrector) and a dedicated CCD;
• One imaging arm with a filter wheel and a dedicated

CCD;
• One calibration system equipped with a simple

on/off lamp (e.g. Thorium-Argon lamp) and one
characterized by a warm-up time required to reach
the necessary stability (e.g. Deuterium lamp).

The skeleton of this prototype is based on a real
astronomical spectrograph that is being built at INAF-
OATs premises and is representative of the components
that we expect to be part of a real E-ELT instrument.

FUNCTIONAL REQUIREMENTS
A detailed set of requirements is a starting point to

produce both adequate software and electronic
architecture design. For our specific prototype we reused
the work done both by ESO and INAF-OATs as part of
the studies for the E-ELT Phase A instruments. Dedicated
use cases were developed covering aspects like
system/instrument start-up, simulation levels, handling of
logs and errors, and, typical of an astronomical
instrument, handling of the acquisition, observation and
calibration phases.

We have reused, moreover, some successful paradigms
employed in the VLT software instrumentation
framework ([1] and reference therein) applying the
experience gained during the software development for
the VLT instruments.

Command/Reply
Sub-systems and, in general, devices of the system

respond to commands (e.g. SETUP) which execute
specific actions. Each command is composed by a string
made up of one or more keywords (in FITS-like format)
and parameters chained together (e.g. INS.FILT1.NAME
U). Each keyword specifies the subsystem and device the
message is addressed to.

State Machine
Devices and components needed to operate the

prototype follow the typical VLT state machine. The
states implemented are: OFF (not running), LOADED
(started-up), STANDBY (software initialized), ONLINE
(hardware initialized) [1].

Parallelism
Operations in our prototype are executed in parallel. At

the device level this means that all devices are capable of
moving in parallel to spare time and minimize
initialization procedures. At the higher level (i.e.
interaction with the user) it means that the corresponding
sub-system does not block upon receiving a request.

SOFTWARE ARCHITECTURE
The baseline design for the prototype Control Software

architecture follows a VLT-like approach [1]. Several
blocks/packages constitute the overall architecture and
could be summarized as follows:
• Low-level control package (identified as ICS – the

Instrument Control Software), responsible for
handling the vital part of the prototype (motorized
devices and lamps in our case);

#dimarcan@oats.inaf.it

WEPKS025 Proceedings of ICALEPCS2011, Grenoble, France

844C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Figure 1: Mock-up prototype software architecture.

• High-level control package (identified as OS – the
Observation Software), responsible for the
coordination of activities of the detectors, low-level
part and the telescope;

• Detector Control Software (DCS), responsible for
controlling/handling all detectors.

We decided to use the ALMA ACS framework [2] as
the infrastructure software to build our mock-up prototype
instrument control software. The reason of this choice is
essentially twofold:
• to use a modern, fully fledged, application

framework to speed-up the prototype implementation
• to evaluate ALMA ACS complexity (learning curve),

completeness, performance and ease-of-integration
with other technologies in a view of its possible
usage inside the E-ELT project.

The ACS philosophy is to model the system as a set of
collaborating components located inside one or more
containers contrary to the VLT case where the various
software packages are implemented as a set of standalone
processes.

Figure 1 shows the final prototype architecture. It is just
a schematic picture and does not show all the involved
entities (e.g. call-backs, threads). A GUI/test program
sends a command to OS, which forwards it to the
involved subsystems. Then the subsystem (at present ICS
or DCS) sends the command to the appropriate devices.
In the case of ICS, the connection between the ACS
Components (LAMP or MOTOR) and the hardware
(Beckhoff or Siemens PLCs) is realized through the OPC
UA technology [3].

In the current version of the prototype the following
C++ (ACS) Containers have been configured:
• OSContainer
• ICSContainer
• DeviceContainer, which hosts the LAMP1, LAMP2,

FILT1 and ADC1 ACS Characteristic components;
• DCSContainer, which hosts the CCDIMAG and

CCDSPECTRO ACS Characteristic components.
The motivation of having (so many) different

containers even though the system is quite simple is to
model it as a highly-distributed system exploiting the
great flexibility of the ACS Component/Container model.
This will facilitate future modifications. For example, OS
and ICS, first implemented in C++, have been in parallel
implemented in Java and deployed on a dedicated Java

Container, in order to assess the feasibility of using this
language for high level coordination tasks.

OS and ICS General Characteristics
In this prototype, the bootstrap of the system uses ACS

activation on demand: each component is activated
automatically only when requested by another component
or by a client. In this way, if there is a need to interact
with a specific device it can be just connected to a GUI
and the corresponding component will be started up. On
the other hand, if there is a request to activate the top-
level OS, it will hierarchically activate ICS which in turn
will be responsible to activate the needed devices. The
ACS configuration database contains the needed
deployment information.

The system is designed and implemented to allow
executing operations fully in parallel. At the sub-system
level (ICS, OS, DCS), command/parameters pairs are
received (using a standard SETUP-command syntax
implemented via CORBA method invocation) and the
corresponding operations executed. Operations are non-
blocking i.e. after checking the correctness of the received
parameters the involved Component is free to accept new
requests. At the OS level this is achieved via call-back
mechanism. Before dispatching the incoming command to
ICS or DCS, a call-back is instantiated and passed,
together with the command, to the appropriate subsystem.
In this way, it is responsibility of the involved subsystem
to notify when the action has completed allowing OS to
handle new requests. Once notified, OS propagates the
answer back to the client (see Figure 2).

At the ICS level, a multi-threading paradigm is used
instead. Parameters are parsed and sent to the appropriate
device using a dedicated thread. Parallel actions are
handled by separate threads and a thread join is used as a
rendezvous point when all actions are completed (see
Figure 2). This allows ICS to receive new commands if
required (e.g. an emergency STOP or a SETUP on
different devices).

The reason to use the call-back mechanism only at the
OS level is due to the fact that OS (in principle) manages
a limited number of sub-systems. Call-backs inside ACS
are basically CORBA objects. They are therefore
somehow “heavy” to activate and this could, at length,
lead to some performance penalties.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS025

Software technology evolution 845 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Adopting these two different paradigms allowed us to
compare the two options and to evaluate the easiness of
their usage. The final impression is very positive: at the
development level both paradigms are fully supported by
ACS and also from performance point of view they
behave as expected (see final section).

Figure 2: Activity diagram (only ICS part is shown).

The Java implementation for both OS and ICS
components has been developed following for both cases
the ICS multi-threaded architecture described above. This
implementation has demonstrated that Java development
is very convenient for these applications and has allowed
us to demonstrate also the re-use of other system elements
developed for ALMA (like the standard ALMA Master
Component state machine or ALMA operator GUIs).

Devices and OPC UA Standard
Both ICS and DCS control hardware devices.

Connection to the ICS PLC hardware is handled via OPC
UA [3]. The OPC UA is a platform-independent standard
through which various kinds of systems and devices can
communicate by sending messages between clients and
servers over TCP networks. In an OPC UA application
we can usually find the following components:
• a “server”, usually a thread on the process controller

which exposes process data and methods that might
run on another node and communicate with the
hardware with proprietary protocols. It is supplied
(typically) by the hardware manufacturer;

• a “client” that, by means of APIs, implements the
OPC UA communication stack and allows the user
application to access the data and methods exposed
on the “server” side.

In the current prototype version the devices controlled
by ICS are:
• LAMP1 – a simple on/off device (mimic a true ThAr

lamp) controlled physically by a Beckhoff PLC;
• LAMP2 - a simple on/off device (mimic a true

Deuterium lamp), with functionalities similar to
Lamp1, but with a warm-up time i.e. the time that the
lamp needs to reach full operative mode. Also this
lamp is physically controlled by a Beckhoff PLC;

• FILT1 – a filter wheel with certain number of
discrete positions controlled physically by a Siemens
PLC;

• ADC1 – rotational device physically controlled by a
Beckhoff PLC.

DCS controls the following devices:
• CCDImag – implements the interface to a Finger

Lakes Instrumentation (FLI) CCD USB Camera.
• CCDSpectro – implemented with dummy responses.
We implemented our own OPC UA client inside the

ACS by means of DevIO abstraction layer [2] using the
OPC UA client provided by Unified Automation. The
OPC UA SDK library is well wrapped inside just two
classes: the first one implements all the steps that are
necessary to correctly access (i.e. read, write, subscribe) a
specific node through a DevIO interface; the second one
handles all the connections/disconnections with the PLCs.

Another project based on ACS [4] is now taking this
implementation as a starting point for writing a similar
implementation on Java. Once this will be done, we will
retrofit this prototype with a Java implementation of
Device, to verify if also this lower level control part can
be implemented conveniently in Java.

ELECTRONIC ARCHITECTURE
One of the aims of the prototype has been to evaluate

possible hardware technologies that in terms of
performance and cost could be employed in the actual
implementation of the E-ELT instruments. Following the
description given in the preceding sections (usage of
PLCs and communication through OPC UA standard) two
complete hardware infrastructures have been set-up to this
purpose at our laboratories: one based on Beckhoff
TwinCAT SoftPLC platform and the other on Siemens
S7-300 PLC platform. Specifically the Beckhoff system is
a CX9000 family embedded system equipped with I/O
modules (EL1002, EL1014, EL2004) and the AX5201
servo drive able to control the AM3022 brushless
synchronous servomotor. The Siemens system is a
Compact CPU (CPU 314C-2 DP) equipped with the
FM354 Servo Function module able to control a custom
made DC drive used in ESO/VLT instruments.

In the Beckhoff case, the PLC software has been
derived from the code developed for the ESO/VLT
PIONIER instrument and uses the Motion Control (MC)

WEPKS025 Proceedings of ICALEPCS2011, Grenoble, France

846C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

library conforming to PLCopen IEC 61134-3 as interface
to the motors. In the Siemens case, due to the lack of
PLCopen compliant libraries (cost and compatibility with
our current hardware layout is under evaluation),
dedicated code has been developed based on the Siemens
FM354_354 block library. Note that the same subset of
process variables as the one used in the Beckhoff
implementation were exposed making the two platforms
fully and transparently interchangeable. This is for sure
one of the major achievements of this project: the
prototype has shown that thanks to the ACS DevIO
abstraction layer and a clever usage of the OPC UA
standard, the overall system is unaware of the employed
underlying technology/vendor products. By only
changing few (ASCII) configuration files, but without
having to recompile high-level ACS Components code or
changing GUIs, it has been possible to control
motors/lamps using platforms of the two different vendors
with the possibility to interchange them in a completely
seamless way. For the E-ELT instruments this has a quite
big impact; it means that it could be possible to change
the underlying low-level technology (e.g. due to
obsolescence) without affecting the high-level framework
or vice-versa in fully transparent way.

Performance
Performance measurement has been done with a mock-

up for an ADC connected to the the Beckhoff platform.
An ADC is a device able to compensate (counter-balance)
the dispersion produced by the terrestrial atmosphere on
the incoming starlight, composed by prisms that must be
free to rotate. Their position depends on the celestial
position of the object to be observed and must be
therefore continuously updated.

The performance test that has been carried on is
relatively simple: within a thread (spawned by the ACS
Component Device associated to the ADC), the new
position is calculated (simulating a real astronomical
object) and then two calls are made trough OPC UA. The
first call updates the target position; the second triggers
the actual movement of the motor. To try to reach the real
limit of the system, no check is performed on the
positioning by the high-level software. In the case the
motor is still positioning while a new “move” request is
triggered, the target position gets simply updated and the
motor continues its movement.

Measurements were made by time stamping, within the
ACS code, when a thread is entered, before the first OPC
UA call and at the thread exit.

At the PLC level, a physical output was mapped to the
“move” flag and then sampled with an oscilloscope. No
other tools where accessing the PLC by network when the
test was made.

Analysis of these measurements shows that, as
expected, most of the time is spent in the OPC UA
communication (astronomical computation and thread life
cycle management by ACS is negligible compared to the
OPC UA calls). With our slow CX9010 system (consider
that this is the cheapest Beckhoff CPU family able to run

an OPC UA server) and a 10 ms PLC cycle the average
time between two consecutive thread call is of the order
of 80 ms as confirmed also in Figure 3 by an oscilloscope
screen capture.

Figure 3: oscilloscope screen capture. Average time
between two successive “move” commands is of the order
of 80 ms.

Results can be certainly improved using a more
performing CPU family (e.g. CX1030), but the actual
measurements confirm already now that our (relatively)
cheap hardware system connected to the ACS framework
through OPC UA is able to sustain cycles of the order of
10 Hz which is well within the requirements asked for our
applications.

CONCLUSIONS
The main outcome of our work is that the selected

technologies fulfil the imposed requirements and are
feasible alternatives to implement instrument control
software for the E-ELT. ACS strong points are for sure
the Component/Container paradigm, the transparent
managing of the Component lifecycles, the DevIO
interfaces and the various services offered by the
framework which ease implementation (e.g. threads).

The major strength in using OPC UA is the transparent
hardware management. Measurements show that
performance achieved at the communication level are
within specification for most astronomical requirements
and therefore OPC UA, in perspective, could be further
evaluated as an appealing technology to be employed for
the future E-ELT instruments.

REFERENCES
[1] M.J.Kiekebusch et al., “Evolution of the VLT

instrument control system toward industry
standards”, Proc. SPIE 7740, 77400T (2010)

[2] G. Chiozzi et al., “ALMA Common Software (ACS),
status and development”, ICALEPCS, TUP101,
(2009)

[3] Mahnke et al., “OPC Unified Architecture”, ISBN
978-3-540-68898-3, Springer (2009)

[4] I. Oya et al., “A Readout and Control System for
CTA Prototype Telescope”, ICALEPCS,
MOPMU026, (2011)

Proceedings of ICALEPCS2011, Grenoble, France WEPKS025

Software technology evolution 847 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

