Experiences in Applying MDE to Telescope and Instrument Control System Domain

L. Andolfato, R. Karban, M. Schilling,

H. Sommer, M. Zamparelli, G. Chiozzi

European Southern Observatory (www.eso.org)

Outline

European Organisation for Astronomical Research in the Southern Hemisphere

- Introduction to the Telescope and Instrument Domain
- Lessons Learned
- Projects

Paranal Observatory

European Organisation for Astronomical Research in the Southern Hemisphere

Cerro Paranal, 2635m, Atacama desert, Chile.

ALMA Observatory

ESO European Organisation for Astronomical Research In the Southern Hemisphere

Atacama Large Millimeter Array, 5000m, Atacama desert, Chile.

Telescope and Instrument Domain

Telescope

- Pointing
- Tracking
- Auto Guiding
- Field Stabilization
- Adaptive Optics
- Laser Guide Star
- Active Optics
- Temperature control
- Dome Tracking

Interferometer

- Image & Pupil
 Stabilization
- Pupil Relay
- Fringe Search & Tracking

UT3 (Melipal) UT4 (Yepun) ISAAC / SPHERE (2013) AOF (2015) VIMOS SINFONI NACO / MUSE (2014) UT2 (Kueyen) VISTA FLAMES VST UVES UT1 (Antu) CRIRES VLT KMOS Incoherent combined focus: ESPRESSO (2016) VLTI MIDI AMBER PRIMA Visitor instrument GRAVITY (2016) MATISSE (2016)

ESO

European Organisation for Astronomical

Research in the Southern Hemisphere

Telescope and Instrument Domain

Instruments

- Drive the Observation
- Create Images
- Analyse Images for intensity, size, morphology, or spectral content
- Verify Scientific Data against Calibration
- Archive Scientific Data

European Organisation for Astronomical Research in the Southern Hemisphere

Telescope and Instrument Domain

European Organisation for Astronomical Research in the Southern Hemisphere

<u>8</u>

	PARANAL (VLT)	ALMA
Observatory Construction Time	10 years (1988-1998)	14 years (1998-2012)
Observatory Expected Lifetime	>20 years	>30 years
New Instruments / Receivers	~ Every year	~ Every 2 years
Initial SW Platform	HP-UX, HP RTAP C, TCL/TK	Linux, VxWorks C++, Java, Python CORBA
Current SW Platform	Linux, VxWorks C++, C, TCL/TK CCS (TCP/IP)	Linux, Linux RTAI C++, Java, Python CORBA, DDS
Technical Downtime	< 3% observation time (night time operation)	< 5% observation time (24h operation)

Semantic Consistency

Problem: Different tools/libraries interpret models differently.
Context: Model reuse (Simulation, Model Checking, Code Generation).

Lessons Learned: Select a (standard) execution semantic

and stick to it in the whole tool-chain.

Examples: Statecharts semantic.

Modifying Behaviour@Runtime

Problem: Efficiently apply last minute changes.

Context: Large systems that can be fully integrated only once

at the final remote location.

Lessons Learned:

- Use a mix of compiled and script languages.
- Introduce the ability to change behaviour at runtime.

Modifying Behaviour@Runtime

European Organisation for Astronomical Research in the Southern Hemisphere

Examples: Acquisition sequences.

Performance Indicator

Problem: How much time should we spend in modeling?
Context: Some dev would model forever others never. Some project managers consider modeling expensive.
Lessons Learned: Constantly measure the ROI.

1)	Modeling Cost	Should be less than the cost of developing by hand the part of application that is generated from the model.
2)	Number of Generated Applications	Should be big enough to pay off the investment in the modeling infrastructure.

Performance Indicator (cont)

Example: Comparing control SW for two detector controllers.

- Similar projects, NGC slightly more complex, ~same team.
- Number of NGC applications based on MDE: 5
- Theoretical pay-off thresholds: 3.3 applications.

Model Validation

Problem: Is my model a valid instance of my meta-model?Context: Many modeling mistakes are discovered only during transformation, execution or compilation.

Lessons Learned:

- Assign an expert to each project.
- Automatic model validation while building the model.

Tool-chain Obsolescence

Problem: Tool-chain evolves with time.

Context: Development last >10 yrs, maintenance >30 yrs.

Lessons Learned:

 Vendor independent representation of the model.

European Organisation

- M2M transformation know-how.
- Transformation languages with large user base, open source, and compliant with standards.
- Archive modeling tools and runtime environments!

SW Evolution

Problem: SW platforms, standards, guidelines, document templates evolve with time.

Context: Development last > 10 yrs, maintenance > 30 yrs, need to support multiple (versions of) SW platforms.
Lessons Learned: M2T approach simplifies a lot maintenance as long as the transformation can be modified (and the meta-model is stable enough).

Generated Code vs. Libraries

Problem: Should libraries be replaced by M2T transformation?

Context: SW rebuild takes time.

Lessons Learned: Use libraries.

- Refactor M2T templates.
- Prefer configurable libraries.

Client

Projects

European Organisation for Astronomical Research in the Southern Hemisphere

Auxiliary Telescope

PRIMA

Period: 1999-2005 FTE: 14 New Components: 29 (11 DSL based, 0 UML based) UML State/Tran: 0/0

Period: 2002-2008 FTE: 14.4 New Components: 53 (15 DSL based, 10 UML based) UML State/Tran: 252/864 UML State/Tran: 432/1260

Period: 2005-2009 FTE: 17.35 New Components: 37 (13 DSL based, 11 UML based)

Questions?

ESO European Organisation for Astronomical Research in the Southern Hemisphere

Acknowledgments

Nicolas Beneš, Nicola Migliorini, Alexis Tajeda, Arturo Hoffstadt, Cristian Morales, Joao Lopez

ESO European Organisation for Astronomical Research in the Southern Hemisphere

Backup Slides

Future Plans

ESO European Organisation for Astronomical Research In the Southern Hemisphere

Achieve Semantic Consistency

(Model Checker for SCXML).

• Improve Model Validation

(Conceptual Modeling Ontology and Framework).

• Support for new SW Platforms.

Modeling Language

ESO European Organisation for Astronomical Research in the Southern Hemisphere

Problem: Graphical or textual language?

Context:

- SW development: many (large) changes.
- SW maintenance: few (small) changes per year.
- Not everybody likes graphical languages.

Lessons Learned: Use both.

```
<state id="A" initial="B">
<state id="B">
<transition event="e1" target="C"/>
</state>
<state id="C">
</state>
<transition event="e1" target="D"/>
</state>
<state id="D">
</state>
```


Archive Generated Artefacts

European Organisation for Astronomical Research in the Southern Hemisphere

Problem: Do we archive what is generated?

Context: Pressure to avoid observatory downtime.

Lessons Learned: Yes we do because

- Speed-up the build process.
- Makes faster the comparison (diff).

Performance Indicator

(Avg. Cost for N Traditional Appl.) \geq (Avg. Cost for N MDE Appl.) N*(**TMI**+TMD) \geq N*(**TMI**+TM) + (TMMDEF + TMMNAV + TTPL) N*TMD \geq N*TM + (TMMDEF + TMMNAV + TTPL)

(TM \leq TMD) and (N big enough)

- N = number of applications
- TMI = average cost for the model independent part of the application
- TMD = average cost for the model dependent part of the application
- TM = average cost for modeling one application
- TMMDEF = cost for mm definition

TMMNAV = cost for mm navigation, TTPL cost for the templates

Tools

ES

ESO

European Organisation

Tools

Purpose	ΤοοΙ	Description
Modeling	MagicDraw	NoMagic
Simulation	CAMEO Simulation Toolkit	NoMagic, SCXML based
Documentation	Model Based Document Generator	MD plug-in developed in house to transform SysML models into DocBook XML files.
Code Generation	COMODO	Java application developed in house based on EMF and Xpand/Xtend to transform UML models into SCXML based applications.
Model Verification	Java Pathfinder (jpf-statechart)	NASA Ames Model Checker for Java.
Statecharts Engine	Apache Commons SCXML, scxml4cpp	For Java by Apache. For C++ developed in house.
Model Validation	Conceptual Modeling Framework	Transforms ontology into SysML profile and MD plug-in.
Andolfato 2014-10-02	STATION -	

ESO European Organisation for Astronomical Research in the Southern Hemisphere

W3C SCXML Standard

UML2SCXML Mapping

Exco European Organisation for Astronomical Research in the Southern Hemisphere

Cross Platform Model2Text

4) Xpand Templates generates the **Transformations** artifacts using Xtend functions «xpt» «scxml» «mwe» run generates SCXML SCXML SCXML expands Template 2) One Workflow Model 1 workflow per run platform + «xpt» ACS «mwe» generates Artifact expands. ACS ACS Template 1..* Workflow 1. «mwe» «xpt»

COMODO MetaModel

ESO European Organisation for Astronomical Research in the Southern Hemisphere

