
Experiences in Applying Model Driven Engineering to
the Telescope and Instrument Control System Domain

Luigi Andolfato, Robert Karban, Marcus Schilling, Heiko Sommer, Michele
Zamparelli, and Gianluca Chiozzi

European Southern Observatory, Karl-Schwarzschild-Str. 2, Garching bei München, Germany
{landolfa,rkarban,mschilli,hsommer,mzampare,gchiozzi}@eso.org

Abstract. The development of control systems for large telescopes is frequently
challenged by the combination of research and industrial development
processes, the bridging of astronomical and engineering domains, the long de-
velopment and maintenance time-line, and the need to support multiple hard-
ware and software platforms. This paper illustrates the application of a model
driven engineering approach to mitigate some of these recurring issues. It de-
scribes the lessons learned from introducing a modeling language and creating
model transformations for analysis, documentation, simulation, validation, and
code generation.

Keywords: model driven engineering, telescope control systems, model trans-
formation, model validation, code generation.

1 Introduction

1.1 The European Southern Observatory Programmes

The European Southern Observatory (ESO) is an intergovernmental astronomy organ-
ization that carries out ambitious programmes focused on the design, construction and
operation of observing facilities. ESO has its headquarters in Garching bei München
(Germany) and operates three observing sites in Chile: La Silla, Paranal, and Chaj-
nantor. The two major programmes of ESO during the last 20 years were the Very
Large Telescope (VLT) and the Atacama Large Millimeter Array (ALMA).

The VLT [16] is an optical-light astronomical observatory and consists of an array
of four telescopes, each with a main mirror of 8.2m diameter, that can observe togeth-
er or individually and four smaller (1.8m) telescopes dedicated to interferometry,
making it the largest facility of its kind. The construction of the VLT started in 1988
and it has been fully operational at the Paranal Observatory since the year 1999.

ALMA [17] is a global partnership between the scientific communities of East
Asia, Europe and North America with Chile. It comprises an array of 66 12-metre and
7-metre diameter antennas observing at millimeter and sub-millimeter wavelengths.
Its construction started in 1998 and in early 2013 it was handed over to the science
operations at the Chajnantor site.

gchiozzi
Text Box
J.Dingel et al. (Eds): Model-Driven Engineering Languages and Systems
Lecture Notes in Computer Science Volume 8767, 2014, pp 403-419
Springer International Publishing Switzerland 2014

1.2 Telescope and Instrument Control Systems

An astronomical observation consists of collecting electromagnetic radiation (such as
visible light) emitted or reflected from a distant celestial target. Optical telescopes
collect the light. Instruments create images analyzed for intensity, size, morphology,
or spectral content. Telescope and instruments form a tightly coupled system [19].

Control systems for astronomical observing facilities execute observing blocks, de-
fining celestial targets, necessary boundary conditions (e.g. required atmospheric
conditions), and observing modes (e.g. quality of the wave front) to produce scientifi-
cally-relevant data. The Telescope Control System (TCS) main goal is to maintain
wave front or radio signal quality throughout the duration of the observation. The
Instrument Control System (ICS) is responsible for acquiring the scientific data using
the TCS to receive the wave front. The TCS includes all hardware, software, and
communication infrastructure required to control the telescope and the dome. It pro-
vides access to the opto-mechanical components, manages and coordinates system
resources, and performs fault detection and recovery. Large observing facilities in-
volve the control and coordination of distributed actuators and sensors, the real-time
compensation of atmospheric turbulences, and the coordination of the safety func-
tions to protect humans and the system itself from hazardous situations.

When building control systems for large science facilities, like telescopes, a num-
ber of challenges have to be faced. Telescopes and their instruments are interdiscipli-
nary and software intensive systems with long operational life-times between 10 and
50 years. While two generations of telescopes are typically 15 years apart, introducing
major technological changes, new instruments are introduced every year and are
bound to the telescope’s technology.

Although they are one-of-a-kind experimental machines with many components
that had never been built before (e.g. nanometer accuracy position actuators, very low
noise CCDs), they have to guarantee high dependability. For example the VLT re-
quires maximum technical downtime of 3% during the observation time.

Most of the time, it is not possible to perform complete system tests before the dep-
loyment in the operational environment. This is due to different ambient and observ-
ing condition constraints and to the cost of integrating the full system which can be
afforded only once. Therefore the architecture needs to build in the capability to cope
with last minute changes such as modifications in the control system hierarchy, dif-
ferent combination of actuator and sensors, different interaction of distributed control
loops.

Despite the fact that those systems are at some point handed over to science opera-
tions, they are never frozen but evolve over their lifetime. New scientific objectives
may require additional functionalities, or hardware and software can become obsolete.
The result is a telescope with subsystems and instruments running on different control
SW releases or even different versions of hardware and software infrastructure. A key
element of the software infrastructure is the software platform which is used to devel-
op the control applications and includes operating systems, programming languages,
communication middleware, IDEs, application frameworks, real-time database, log-

ging, alarms, configuration and error handling services. The overview of the software
platforms used for various ESO programmes is given in Table 1.

Table 1. Software platforms at ESO.

Software
Platform

Programme OS RTOS Languages Middle-
ware

VLTSW

Very Large
Telescope

Linux VxWorks C, C++,
TCL/TK

Proprietary
messaging
system

ACS

Atacama Large
Millimeter Array

Linux Linux RT C++, Java,
Python

CORBA,
DDS

SPARTA
[34]

Very Large
Telescope

Linux VxWorks C, C++,
Java,
TCL/TK

CORBA,
DDS

Rapid
Prototype

Any JVM N/A Java RabbitMQ
[31]

2 Modeling Environment

2.1 Evolution of Modeling Environment

The first successful attempt1 to apply model transformation to the development of
telescope control software was the Local control unit Server Framework (LSF) tool.
LSF was created in 2000 to help building the applications running on the real-time
local control units providing access to HW. In order to build an LSF application, a
configuration file containing information on the number and type of devices to control
is processed by a Tcl script which produces the skeleton code of an application with
call-backs for custom code to be completed by the developer. In addition, LSF pro-
vides a predefined state machine implementation where the developer can hook in
code for predefined actions. An LSF application can be extended by adding more
device definitions in the configuration files and reapplying the transformation. LSF
has been extensively used for the development of the Auxiliary Telescopes Control
Software (ATCS), Phase Reference Image and Micro-arcsecond Astrometry (PRIMA)
control software, and the Active Phase Experiment (APE).

In 2004, inspired by LSF, a tool suite called Workstation Software Framework
(WSF) was developed to generate soft real time supervisory applications [1]. WSF
was initially created to build the supervisory applications of the PRIMA control soft-
ware and later successfully adopted for the development of applications for many
other projects of the Very Large Telescope program such as the Interferometric Su-
pervisor Software configuration process, the Delay Lines rail-alignment tool, the APE
project, and the New Generation CCD (NGC). In the beginning WSF applications

1 Earlier, the use of Rhapsody code generation capabilities was investigated and considered

too constraining because of the dependency on proprietary run-time libraries.

were generated from a configuration file containing the textual description of their
behavior in the form of a state machine. Later on, tools were developed to transform
Rational ROSE and MagicDraw UML State Machine models into the text configura-
tion file. The modeling tools acted as a front end to facilitate the creation of State-
charts [10] since, with increasing complexity the maintenance of the text description
became significantly more time-consuming. The applications generated by WSF were
based on the State design pattern [11].

A development parallel to WSF was started in 2004 for the ALMA programme.
The ALMA Project Data Model generator (APDMGen) generates, at the beginning
only from XML schema and later also from UML class diagrams, the data classes
representing the data model: complex data structures to describe science targets, cali-
brations, data quality requirements, or hardware configurations.

LSF

WSF

2000

2002

2004

2006

2008

2010

2012

COMODO

APDMGen

ATCS

P
R
I
M
A

A
P
E

Threaded
NGC

APDM

P
R
I
M
A

SupervisionReal‐Time Data Model

Tool
Evolution

2013

A
P
E N

G
C

LSV
Prototype

Project Applications
Size in
kSLOC

UML
Elements

FTE

ATCS 104 0 14

PRIMA 204 1416 14.4

APDM 113 1680 6

APE 215 8193
17.3
5

NGC 51 560 3

LSV
Prototype

20 1288 0.4

Event
Subscriber

1 100 0.1

Threaded
NGC

30 1426 0.2

Fig. 1. The left panel shows the projects (blue boxes) developed using code generation tools
(brown boxes) in the last 13 years (Y axis). The type of applications built is also reported (X

axis). The right panel lists the projects and some information on size and cost: the second col-
umn provides the application size in kSLOC; the third column is the size of the input model in
terms of UML Elements and their subclasses with the exception of profiles and libraries; the

last column is the effort expressed as Full Time Equivalents (FTE), including application spe-
cific (meta-) modeling.

In 2009, based on the experience gained with WSF, a new project was started to
create a platform independent transformation tool to develop state machine driven
applications. Two new main requirements were introduced: the possibility to support
multiple software platforms2 like the control software for the Very Large Telescope
(VLTSW) and the Alma Common Software (ACS), and the ability to interpret state
machines. The first requirement focused on enabling model reusability across differ-
ent platforms allowing the developers to create applications regardless of the target
development and execution environment. The second requirement aimed at reducing
the size of the generated applications by decoupling the application from the state

2 Note that LSF and WSF tools are specific to the VLT platform and APDMGen works only

for the ACS platform.

machine execution engine and to provide the capability of changing the state machine
logic at runtime allowing for fast last minute changes. The project delivered a toolkit,
called COMODO [2], which has been used to develop the Telescope Control Local
Supervisor (LSV) prototype running on a rapid prototyping software platform based
on Java and RabbitMQ [31], to redevelop a new multi-threaded version of the NGC
for the VLTSW platform, and to create the Event Subscriber application for the ACS
platform. Fig. 1 summarizes the evolution of the code generation tools at ESO and
provides an idea on the size and cost of the projects.

In order to maximize the return on investment of modeling, more applications of
model transformations were explored in addition to the ones targeted on the final
production code. For example model simulation was used to get an early feedback on
the logical correctness of the model especially in the context of collaborating state
machines. Initially simulation was applied in order to understand some principles of
State Analysis methodology [15] and later on to verify the behavior of telescope con-
trol architecture. However, it became quickly clear that proper model validation could
be better achieved using a model checking approach. Therefore COMODO was ex-
tended to support a transformation to the Java Pathfinder model checker to be able to
formally validate state machine models [6]. This transformation was applied to vali-
date the control software design of the PRIMA Variable Curvature Mirror and, in
collaboration with NASA/JPL, to verify part of the Soil Moisture Active Passive fault
protections system [21].

To guarantee consistency between models and documentation some effort was
spent in 1999 to implement a “one document” approach [36] where HTML and Word
documents were produced using Telelogic DocExpress from Rational ROSE models.
Unfortunately the transformation framework offered insufficient control over the
generated artifacts and therefore this approach was used only in the ATCS project.
Ten years later a plug-in for MagicDraw, the Model Based Document Generator [18][
24], was developed in-house with ownership over the transformation allowing full
compliance with ESO documentation templates.

Finally, the recent Conceptual Modeling Framework (CMF) initiative aims at en-
forcing model correctness using ontologies to capture more formally business rules.

2.2 Current Status

The modeling environment currently in use is based on the following elements.

UML™ / SysML™ modeling languages and MagicDraw®. MagicDraw [29] is a
commercially available software and system modeling tool with teamwork support. It
supports UML 2 [27] and, via plug-in mechanism, SysML [28]. The Cameo Simula-
tion Toolkit® [30] is a plug-in for MagicDraw which provides an extendable model
execution framework based on OMG fUML [35] and W3C SCXML [4] standards.

Conceptual Modeling Ontology. The Conceptual Modeling Ontology (CMO) is an
ontology language similar to OWL2 [33] introduced, in form of UML Profile, to per-

mit the expression of business specific concepts and relationships recurring across all
our models. It has been developed by ESO based on work done by NASA/JPL [23]
and some experiences in defining DSLs using SysML [24]. CMO is also used to ex-
press the mapping between the ontology and the UML meta-model elements. Various
layers of interdependent ontologies are supported.

Conceptual Modeling Framework. The Conceptual Modeling Framework (CMF) is
an approach, under development at ESO, for turning UML into a domain specific
modeling language. It transforms ontologies written in CMO into UML profiles, the
associated validation rules and custom diagram editors. The generated validation rules
are used by MagicDraw’s validation engine which can run on-demand or can con-
stantly check the model in the background while it is being edited. MagicDraw cus-
tomization features are used to adjust the diagram editor to only offer certain element
types to the modelers according to the specified ontology.

Model Based Document Generator. The Model Based Document Generator
(MBDG [18][24]) is a profile and a plug-in for MagicDraw developed by ESO to be
able to write documents as SysML models and to transform them into DocBook [25]
XML files. Since documents and system models coexist within the same modeling
environment, duplication of information is avoided and consistency is automatically
maintained. The generated DocBook files can be converted into different document
formats such as PDF.

APDMGen. The ALMA Project Data Model generator is a toolkit, developed by
ALMA and based on openArchitectureWare [22], to transform UML class diagrams
into XML schemas and Java data classes.

Java Pathfinder model checker. Java Pathfinder (JPF) [32] is a system to verify
executable Java byte code programs. JPF was developed at the NASA Ames Research
Center and open sourced in 2005. It provides an extension, called jpf-statechart [6],
used to execute and systematically verify Statecharts models.

SCXML Engine. The SCXML engine is required to interpret the SCXML documents
that describe applications behavior. For Java applications, the Apache Commons
SCXML [5] is used, while for C++ the scxml4cpp library has been developed by
ESO. The Apache Commons SCXML is also used by Cameo Simulation Toolkit.

COMODO Ontology and Profile. The COMODO ontology, based on CMO, cap-
tures the concepts and relations required to describe the structure and behavior of
component based distributed systems. The COMODO profile is the UML representa-
tion of the COMODO ontology [3]. COMODO ontology and profile have been devel-
oped by ESO to be used by the COMODO Toolkit.

COMODO Toolkit. COMODO Toolkit transforms UML models, based on the
COMODO profile, into different artifacts depending on the target platform. In addi-
tion to the VLTSW, ACS, and Rapid Prototype software platforms, it supports plain
Java, and Java Pathfinder model checker by generating Java code compliant with jpf-
statechart3. A summary of the artifacts and activities involved in a COMODO trans-
formation is given in Fig. 2. For all target platforms, the input model, together with
some configuration information such as the part of the model to transform and the
target platform itself, is transformed by COMODO into:

 One or more application skeletons.
 One SCXML document compliant with the StateChartsXML notation defined by

the W3C [4] for each UML State Machine4. The mapping between UML and
SCXML has been defined in [2].

 Test code.
 Build files (ant or makefile).

The generated artifacts together with the developer’s implementation of the actions
and do-activities are compiled and linked with platform specific libraries such as the
SCXML engine (Apache Commons SCXML library [5] or scxml4cpp library).

UML Model

COMODO

Build System

Generated
Application

Code

Libraries
(SCXML Engine)

SCXML
Document

MakefileTest Code

Configuration

Application TestCases

Manually
Developed
Application

Code

Fig. 2. COMODO data flow: in dark gray the platform dependent artifacts and activities; in
light gray the platform independent ones.

3 By inserting manually assertions in entry/exit/transition actions it is possible to verify prop-

erties of the system.
4 For the Java Pathfinder Statecharts platform the SCXML document is not used.

COMODO is composed of a java front-end processing the input parameters and
triggering the execution of the modeling workflow (EMF MWE [12]) specific to the
target platform, a set of Check model validation rules applied to the UML model, a set
of Xpand [13] templates organized by target platform (VLTSW, ACS, etc.) and target
language (C++, Java, XML, text, etc.), and a library of Xtend functions to navigate
the model (Fig. 3)5.

«xpt»
ACS

Template

«xpt»
SCXML

Template

«mwe»
ACS

Workflow

«xpt»
RapidPrototype

Template

«mwe»
SCXML

Workflow

«mwe»
RapidPrototype

Workflow

«mwe»
VLT

Workflow

«xpt»
VLT

Template

«chk»
Rule

«ext»
ProfileSupport

«uml»
Model

«java»
COMODO

«text»
Configuration

Rapid
Prototype
Artifact

VLT
Artifact

«scxml»
SCXML
Model

ACS
Artifactexpands

1..*

expands

1..*

expands

1..*

generates

1..*

generates

1..*

generates

generates

1..*

run

verifies
1..*

expands

1..*

run

uses

uses

uses

Fig. 3. COMODO’s structure. Only four target platforms are shown here: SCXML, VLTSW,
Rapid-Prototype, and ACS. SCXML workflow is reused by the other three platforms. Stereo-

types indicate the language: mwe = modeling workflow engine, xpt = Xpand, ext = Xtend.

3 Lessons Learned

3.1 Modeling Language

The process to move from traditional programming languages to a more abstract lan-
guage has been gradual and natural. For example, a developer in charge of building
ten or more applications tries to minimize the repetitive work by copying the first
application nine times and replacing the application specific parts. The application
specific parts are usually composed of concepts that can be abstracted using a model-
ing language (like states, events, and state transitions) and concepts which are hard to
abstract (like the implementation of actions and do-activities). Initially the abstract
information was stored in text files using simple property-value syntax or using XML
schemas. However for large models we quickly felt the need to use a graphical nota-
tion to group parts of the model and emphasize certain view points. In addition, mod-
els based on topological concepts (e.g. Statecharts) are easier to appreciate using vis-
ual formalism than text [20][7]. Therefore WSF, APDMGen, and COMODO tools

5 MWE, Check, Xpand, and Xtend were part openArchitectureWare toolkit [22] and are now

included in the Eclipse Modeling project [14].

provide the ability to process models created with graphical UML modeling tools.
Unfortunately UML and related tools are not as simple and fast to make small
changes as a text language and a text editor. They require some skills which can be
easily forgotten if the tools are used only once or twice per year (as it may be the case
during the software maintenance phase). Two opposite needs have been observed:

 During development, when models have to be frequently changed, reviewed and
discussed, the graphical representation of models containing topological informa-
tion is very important since it is easier to understand and more compact.

 During maintenance, the software has to be modified few times per year. The
maintenance engineers are infrequent users of our graphical tooling. They feel they
can apply small changes to the model much more quickly in a text editor.

At the moment, we support both textual (SCXML, XML schemas) and graphical re-
presentation (UML Class diagrams and State Machine models) as successfully
adopted in WSF in the past. In order to avoid diverging of the two representations,
changes to the textual one must be recorded and ported back to the graphical one. The
lesson learned is that we need to restrict and customize the user interface of the mod-
elling tool to provide only a subset of UML specialized on Statecharts and composite
structures.

3.2 Obsolescence Management of Tool Chain

Due to the long development and operational life time, the obsolescence of a third-
party tool chain and the associated competence is a major concern. A number of risks
have been identified, in particular for modeling and model transformations activities.
They are related to the unavailability and/or change of:

 UML/SysML modeling tool (MagicDraw and plug-ins)
 UML profile and meta-model (EMF UML2)
 transformation languages (Xpand, Xtend) and modeling frameworks (EMF)
 competent people

The first UML tool integrated with WSF has been RationalROSE by Rational (now
IBM). Later on MagicDraw became our standard UML tool. The porting of the mod-
els from RationalROSE to MagicDraw was done manually since the automatic ex-
port/import procedures to XMI did not work, since UML meta-models were different.
Despite the Model Interchange Working Group effort [37]6, still today it is a chal-
lenge to port models between different UML commercial tools. This is definitely a
problem since large telescopes have more than 20 years life time and we cannot af-
ford to rely only on a single tool vendor or to manually port large models. At the mo-

6 The test case examples proposed are trivial and cover only a subset of UML. For example,

in the State Machine examples history states, internal transitions, nested orthogonal regions,
and different types of triggers and behaviors are not covered.

ment, in order to avoid vendor lock in, COMODO supports UML models in the EMF
UML2 XMI format.

Changes in the meta-model bear the risk of corrupting existing models because
sometimes the migration path from one version to another is not well defined. In par-
ticular when meta-model elements disappear, as it happened from UML 2.3 to 2.4
where the ExecutionEvent event type became obsolete causing potential data loss
(avoided by developing an ad-hoc M2M transformation).

An intermediate vendor independent representation of the model (e.g. EMF XMI
and SCXML) is used to mitigate the risks associated to the modeling tools and UML.
Transformation languages and modeling frameworks were selected among the ones
with larger user base, open source, and most compliant with standards. Concerning
the competences, a small team with modeling and model transformation know how
was established. The team is in charge of providing modeling support to the projects
and customizes the transformations.

3.3 Transformation Ownership

A key point in the successful adoption of MDE is the ability to customize the trans-
formations to have full control over the generated artifacts [8]. This allows:

 generating code conforming to project standards, guidelines and platforms
 producing documentation using the organization’s templates
 supporting changes to the meta-model
 managing problems downstream the tool chain such as new versions (or deficien-

cies) of libraries and compilers

3.4 Platform Independent Modeling

During the creation of COMODO, the definition of the ontology has been the most
time-consuming activity. We believe that this is a general issue since the ontology
definition is an iterative process involving domain specialists capturing the necessary
semantics to enable an efficient and correct transformation. The ontology had to be
adapted many times before a stable compromise between formality and practicability
could be found. The UML profile resulting from the ontology is platform independent
and is designed to be used for all ESO target platforms7. Platform specific informa-
tion, when needed, is provided directly to the model-to-text transformation tool via
command line arguments or a configuration file. This approach intentionally avoids
the Platform Independent Model (PIM) to Platform Specific Model (PSM) model-to-
model transformation, suggested in [26], since this introduces not negligible devel-
opment and maintenance costs, especially when dealing with UML as target meta-
model. For example, the type of target platform is given as a configuration parameter
to the tool and does not appear in the model.

7 Features appearing in the meta-model and semantically irrelevant for a specific target plat-

form are ignored by the transformation tool.

3.5 Modeling vs. Coding

An important lesson learned from WSF development relates to the amount of generat-
ed code. Even though model-to-text transformations take usually an insignificant
amount of time, the compilation of the generated code can be time-consuming. There-
fore it is important to be able to transform only part of the model: in this way we
avoid rebuilding the whole system at each modification. Moreover, preference should
be given to the usage of configurable libraries instead of code generation. For exam-
ple, control applications created with WSF are based on the State Design pattern
which requires the generation of one C++ class per state while applications created by
COMODO use a state machine engine library able to execute SCXML documents. In
the latter case only the SCXML description of the state machine has to be generated.
In general our transformations are targeted for “rich” software platforms: platforms
which include all common services required by the applications (such as logging,
messaging, error and alarm handling, configuration management, etc) and do not need
to be generated.

3.6 Semantic Consistency

There are different flavors of Statecharts semantic [9] and to avoid inconsistency it is
important to stick to one across the tool chain. For example, UML does not specify
any language construct to query at run-time the current Statechart configuration (“in-
State()” or “In()” as defined in [10]). In SCXML the active Statechart configuration is
updated after invoking the exit actions and before invoking the entry actions. We
chose SCXML's over alternative implementations for the following reasons:

 It provides well defined syntax and operational semantic as pseudo-code
 The relevant features of UML State Machines can be easily mapped to SCXML
 The same engine is used for model simulation, production code, and prototyping

Unfortunately the validation step, currently based on jpf-statecharts, is not follow-
ing the SCXML semantics.

3.7 Archive Generated Artifacts

Despite the risk of using outdated artifacts, we keep under version control generated
code in addition to the models for the following reasons:

 To have quick access to the generated artifacts (e.g. for urgent modifications in an
operational environment) and speed-up the build process.

 To verify that models are equivalent by comparing the generated artifacts.

The second point is very important since it avoids having to repeat system tests when
models have to be ported to new tools or to evaluate the impact of changes in the
meta-model.

We also learned that, when using commercial tools, any floating license server ap-
plication should be subject to the same version control procedures as the rest of the
tool chain. Failing to do so prevented us from running legacy versions of the tool.

3.8 Model Correctness

Due to complexity, sometimes weak semantics and general purpose of UML/SysML
it is necessary to customize it and guide the modeler with standardized patterns and
conventions. The compliance of the user model with the defined rules can be verified
in various ways (e.g. offline analysis). However, we have observed that one effective
way is giving the modeler immediate feedback during the modeling activity to create
upfront a model which is correct by construction. This can be achieved by reducing
the number of choices that modelers can make, prescribe certain modeling patterns,
and come up with concise semantics. CMO and CMF are conceived for this purpose.
CMO, following the recommendations given in [23], focuses on conveying in UML
syntax the logical organization of a conceptual ontology whose essential constituents
are unary concepts and reified binary relationships. This approach has the advantage
that the ontology and the user model can be modeled with a single tool and the same
language (UML/SysML). It has been used to define a number of reusable ontologies:
foundational ontologies (Interface Ontology, Structural Ontology), engineering
oriented ontologies (Protocol Ontology, Connector Ontology), telescope oriented
ontologies (Telescope Instrument Ontology).

3.9 Roundtrip and Annotated Code

From the beginning we avoided round-trip transformations since transforming back
the code and merging it into the model is considered too expensive to implement and
maintain. Instead, a clear separation of generated code from manually crafted code is
preferred. Generated code is stored in dedicated files which can be referenced using
delegation or inheritance mechanisms.

Moreover, we observed that is not efficient to model the behavior of actions and
activities because it requires the same time (in the best case, since code editing capa-
bilities within the modeling tool cannot compete with a conventional IDE) as writing
the target code and introduces additional transformation from UML or platform inde-
pendent action languages (e.g. ALF) to the target code. If the model is annotated with
target code then the model-to-text transformation has to be executed every time the
model or the annotated code is modified. In addition the model is not platform inde-
pendent anymore8.

8 In the executable models or model simulation scenario the annotated code is usually a sim-

plification of the final production code. A mapping of simulation code to final production
code can be quite challenging.

3.10 Reusable Modeling

Solutions to recurring problems of control application can be extracted in the form of
a set of modeling patterns documented and collected in a catalog similarly to Design
Patterns. Some examples of state machine modeling patterns are described in [1].

For particular domain specific classes of applications, the whole model is used as a
template to be copied and pasted. Certain elements of the model are parameters (e.g.
events or actions in state machines) that can be replaced with concrete arguments.

3.11 Cost / Benefit Analysis of Model Transformations

ESO’s primary goal is the delivery of telescopes and instruments and not the devel-
opment of modeling tools. It is therefore important to constantly compare the effort of
abstracting information and transforming it into specialized artifacts with the cost of
creating the specialized artifacts manually.

Given a generic SW application, it is always possible to find an abstraction of the
application, called model, and define its source code as composed of two parts: one
that is model dependent (MD) and one that is model independent (MI). A very simple
abstraction is, for example, a function name: the model is simply the name of the
function. Using this abstraction the function’s source code can be separated into two
parts: the name of the function (model dependent because it is generated) and the
body of the function (model independent because it is hand crafted) without the name
of the function.

If TAPPL is the total effort, measured for example in Full Time Equivalent (FTE),
spent to develop an application, then:

 TAPPL = TMI + TMD (1)

where:

 TMI = is the average effort spent to develop by hand the model independent part
of an application

 TMD = is the average effort spent to develop by hand the model dependent part of
an application

A model-to-text transformation requires:

 the definition of a source meta-model (TMMDEF)
 the ability to navigate models based on the source meta-model (TMMNAV)
 the creation of the templates required to generate the target artifacts (TTPL)9
 the creation of the model to transform (TM)

Therefore the effort10 to build N applications using model to text transformation is:

 TAPPL = TMMDEF + TMMNAV + TTPL + N * (TMI + TM) (2)

9 TTPL includes also the development of libraries used by the templates.
10 The effort to apply the transformation is considered to be negligible.

The efficiency of developing an application using model to text transformation with
respect to developing the application by hand requires the comparison the cost of the
two approaches:

 TMMDEF + TMMNAV + TTPL + N * (TMI + TM) ≤ N * (TMI + TMD)

 (TMMDEF + TMMNAV + TTPL) + N * TM ≤ N * TMD (3)

The model transformation approach is more efficient if:

 (TM ≤ TMD) and (N is big enough)

N has to be big enough so that the fixed cost for the creation of the meta-model
(TMMDEF), the development of the tool to navigate the meta-model (TMMNAV)
and the templates (TTPL) is absorbed by the difference between writing by hand the
model dependent code and creating the model. The model transformation approach
tends to be more efficient with simple meta-models easy to navigate and that allow
the creation of compact models. Note that, for projects within the same organization,
ambiguities in the effort measurement can affect in the same way both terms of eq. 3.

For example, the NGC project, composed of five applications based on WSF, re-
quired about 3 FTEs to implement the same functionalities of a similar project
(FIERA) which took about 6.9 FTEs. Both projects were done by roughly the same
team. The average effort for the NGC model independent part of an application (TMI)
equals the total effort minus the effort to build its model; i.e. (3 – 0.1*5) /5 = 0.5. The
average effort for the NGC model dependent part of an application (TMD) equals the
effort to build FIERA minus the model dependent part; i.e. (6.9/5 – 0.5) = 0.88. WSF
development required for the definition of the meta-model (TMMDEF) about 0.02
FTE and for the development of the parser (TMMNAV) 0.76 FTE. The definition of
the templates (TTPL) took 1.76 FTE. Using the simple linear model the breakeven
point is reached at N=3.3 so that for every further application we save 0.78 FTEs.

In case of K transformations (3) becomes:

 (TMMDEF + TMMNAV + ∑ TTPLi) + N * TM ≤ N * ∑ TMDi, i = [1 .. K]

And therefore:

 (TM ≤ ∑ TMDi,) and (N is big enough)

This is similar to (3) except that the sum of the effort to develop the templates for
various transformations has to be taken into account.

Note that with modern transformation languages like Xpand, writing templates is,
in our opinion, very similar to writing normal code. However the assumption TTPL =
TMD cannot be made since TTPL includes some of the effort of generalizing MD.

The maintenance activities like adding new features, fixing bugs, or porting to a
newer (version of the) SW platform, can affect the model independent part of the
application or the model dependent part. In the former case the cost is the same for
both approaches. In the latter case the modification may have to be applied to the
meta-model, the templates, or the models. Changes to the meta-model are the most

expensive since they can imply modifications of the models, templates and/or the tool
to navigate the model. Changes to the templates are more efficient by a factor N-1
(where N is number of applications) with respect to the traditional approach. Changes
to the models are in general more efficient since the level of abstraction is higher and
dependencies (i.e. side-effects introduced by the change) are more evident.

4 Conclusions

In this paper we have presented our experiences in moving from document and code
centric development to a process driven by models. The main focus is on behavioral
models because they have turned out to be most beneficial for the telescope and in-
strument software. The model as a single source of information allows having consis-
tency across different transformed artifacts such as code, documentation, simulation,
and analysis. Automatic transformations simplify for a wider audience of engineers
the usage of specialized tools without requiring expert skills. In addition models are
easier to analyze by model checkers than the final target code, thanks to the higher
level of abstraction and reduced computational complexity. However we observed
that not everything is worth modeling. Therefore we defined a key performance indi-
cator (as a function of the model dependent and the model independent code) to con-
stantly measure the effort introduced by abstracting information and compare it with
the effort required by the traditional development practices.

Large Telescope Control Systems have long operational life-time and are evolving
continuously. New scientific instruments are constantly introduced and the obsolete
components of HW and SW platforms have to be replaced. The ability of transform-
ing domain specific models into new or upgraded target SW platforms by simply
updating templates introduces significant advantages. In contrast to the traditional SW
development approach, changes can be propagated across a number of existing appli-
cations in a systematic and well defined way. The same type of flexibility is also
beneficial when dealing with the last minute changes required during the on-site inte-
gration and deployment.

Two major problems have been encountered when applying a model driven devel-
opment process: the possible lack of semantic integrity and consistency among the
produced artifacts, and the shortage of modeling competences during the maintenance
activities. The former applies to domain specific ontologies that are mapped to stan-
dard modeling languages, and to the structural and behavioral models that are used as
a source for simulation, validation and code generation. The latter concerns the ability
to maintain generated code in a highly dependable system like a telescope without
modeling skills.

Acknowledgments. The authors would like to thank N. Rouquette, S. Jenkins, A.
Kerzhner from NASA/JPL for the discussions on the ontological modeling, N. Janke-
vicius from NoMagic for the collaboration on the Simulation Toolkit, and C. Cumani
and A. Balestra for providing the effort measurements on NGC and FIERA projects.

References

1. Andolfato, L., Karban, R.: Workstation Software Framework. In: Proceedings of the So-
ciety of Photo-Optical Instrumentation Engineers, Vol. 7019, 70191X-1, (2008)

2. Andolfato, L., Chiozzi, G., Migliorini, N., Morales, C.: A platform independent framework
for statecharts code generation. In: Proceedings of the 13th International Conference on
Accelerator and Large Experimental Physics Control Systems (2011)

3. Chiozzi, G., Andolfato, L., Karban, R., Tejeda, A.: A UML profile for code generation of
component based distributed systems. In: Proceedings of the 13th International Conference
on Accelerator and Large Experimental Physics Control Systems, (2011)

4. World Wide Web Consortium: State Chart XML (SCXML) Working Draft Published. De-
cember 6, 2012, (2012)

5. Apache Commons SCXML, http://commons.apache.org/proper/commons-
scxml

6. Mehlitz, P.: Trust Your Model - Verifying Aerospace System Models with Java Pathfind-
er. In: Proc. IEEE Aerospace Conf. '08, Big Sky, MT, Mar. 1-8, (2008)

7. Harel, D.: Statecharts in the Making: A Personal Account. In: Communications of the
ACM, 03/2009, Vol.52, No.03, p.6, (2009)

8. Wagstaff, K.L., Benowitz, E., Byrne, D. J., Peters, K., Watney, G.: Automatic code gener-
ation for instrument flight software. In: Proceedings of the 9th International Symposium on
Artificial Intelligence, Robotics, and Automation in Space, (2008)

9. Crane, M.L., Dingel, J.: UML vs. Classical vs. Rhapsody statecharts: Not all models are
created equal. In: Software and Systems Modelling, Volume 6, Number 4, (2007)

10. Harel, D.: Statecharts: A visual formalism for complex systems. In: Science of Computer
Programming, 8(3):231–274, June 1987, (1987)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, pp. 305-313, (2002)

12. Eclipse Modeling Framework: Modeling Workflow Engine,
https://projects.eclipse.org/projects/modeling.emf.mwe

13. Klatt, B.: Xpand: A Closer Look at the model2text Transformation Language. In: 12th Eu-
ropean Conference on Software Maintenance and Reengineering, (2008)

14. Eclipse Modeling Project, http://www.eclipse.org/modeling
15. Ingham, M.D., Rasmussen, R.D., Bennett, M.B., Moncada, A.C.: Engineering Complex

Embedded Systems with State Analysis and the Mission Data System. In AIAA Journal of
Areospace Computing Information and Communication, vol. 2, No. 12, (2005)

16. Wirenstrand, K.: VLT telescope control software: status, development, and lessons
learned. In: Proc. SPIE 2003, vol. 4837, p. 965, (2003)

17. Casasola, V., Brand, J.: The exciting future of (sub-)millimeter interferometry: ALMA. In:
in Proceedings of the 54th national meeting of the Italian Astronomical Society, (2010)

18. Model Based Document Generator,
http://sourceforge.net/projects/mbse4md/?source=directory

19. Bely, P. Y.: The design and construction of large optical telescopes. Springer, (2003)
20. Harel, D.: On visual formalism. In: Communications of the ACM, Vol.31, No.5, (1988)
21. Gibson, C., Karban, R., Andolfato, L., Day, J.: Formal Validation of Fault Management

Design Solutions. Presented at the Java Pathfinder Workshop 2013, (2013)
22. Haase, A., Voelter, M., Efftinge, S., Kolb, B.: Introduction to openArchitectureWare 4.1.2.

In: Model-Driven Development Tool Implementers Forum (MDD-TIF’07) (co-located
with TOOLS 2007), (2007)

23. Jenkins, J., Rouquette, N.: Semantically Rigorous Systems Engineering Using SysML and
OWL. In: 5th International Workshop on Systems & Concurrent Engineering for Space
Applications, (2012)

24. Karban, R., Zamparelli, M., Bauvier, B., Chiozzi, G.: Three years of MBSE for a large
scientific programme: Report from the Trenches of Telescope Modelling. In: Proceeding
22nd Annual INCOSE International Symposium, (2012)

25. Walsh, N.: DocBook 5: The Definitive Guide. O'Reilly Media, April 2010, (2010)
26. Frankel, D.: Model Driven Architecture – Applying MDA to Enterprise Computing. OMG

Press, p. 191, (2003)
27. Unified Modeling Language (UML), http://www.omg.org/spec/UML
28. System Modeling Language (SysML), http://www.omgsysml.org
29. MagicDraw, http://www.nomagic.com/products/magicdraw.html
30. Cameo Simulation Toolkit, http://www.nomagic.com/products/magicdraw-

addons/cameo-simulation-toolkit.html
31. RabbitMQ, http://www.rabbitmq.com
32. Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf
33. OWL 2 Web Ontology Language, http://www.w3.org/TR/owl2-overview
34. Fedrigo, E., Donaldson, R.: SPARTA: the ESO standard platform for adaptive optics real

time applications. In: Proc. SPIE 6272, (2006)
35. Semantics of A Foundational Subset for Executable UML models (FUML),

http://www.omg.org/spec/FUML
36. Chiozzi, G., Duhoux, P. Karban, R.: VLTI Auxiliary telescopes: a full Object Oriented ap-

proach. In: Proc. SPIE 2000, vol. 4009-03, p. 5, (2000)
37. Model Interchange Working Group (MIWG, http://www.omgwiki.org/model-

interchange/doku.php

